| Centre Number       |  |  | Candidate Number |  |  |
|---------------------|--|--|------------------|--|--|
| Surname             |  |  |                  |  |  |
| Other Names         |  |  |                  |  |  |
| Candidate Signature |  |  |                  |  |  |



Level 2 Certificate in Further Mathematics

# Further Mathematics Level 2

8360/2

# **Practice Paper Set 4**

# Paper 2

#### Calculator

#### For this paper you must have:

- a calculator
- mathematical instruments.

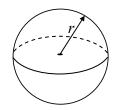


Time allowed: 2 hours

#### Instructions

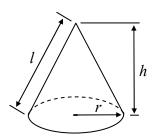
- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- · Answer all questions.
- You must answer the questions in the space provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

#### Information


- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer booklet.
- The use of a calculator is expected but calculators with a facility for symbolic algebra must **not** be used.

| For Exam | iner's Use   |
|----------|--------------|
| Examine  | r's Initials |
| Pages    | Mark         |
| 3        |              |
| 4 – 5    |              |
| 6 – 7    |              |
| 8 – 9    |              |
| 10 – 11  |              |
| 12 – 13  |              |
| 14 – 15  |              |
| 16 – 17  |              |
| 18 – 19  |              |
| 20 – 21  |              |
| 22 – 23  |              |
| 24 – 25  |              |
| TOTAL    |              |

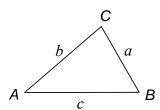
#### **Formulae Sheet**


Volume of sphere = 
$$\frac{4}{3}\pi r^3$$

Surface area of sphere = 
$$4\pi r^2$$



Volume of cone = 
$$\frac{1}{3}\pi r^2 h$$


Curved surface area of cone = 
$$\pi r l$$



## In any triangle ABC

Area of triangle = 
$$\frac{1}{2}ab \sin C$$

Sine rule 
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$



**Cosine rule** 
$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

#### The Quadratic Equation

The solutions of 
$$ax^2 + bx + c = 0$$
, where  $a \ne 0$ , are given by  $x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$ 

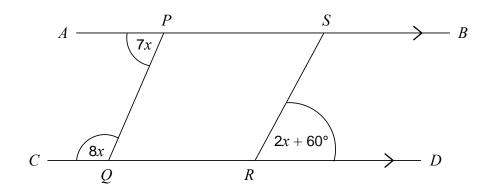
### **Trigonometric Identities**

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \sin^2 \theta + \cos^2 \theta = 1$$

| Answer al | lo | questions | in | the | spaces | provided. |
|-----------|----|-----------|----|-----|--------|-----------|
|           |    |           |    |     |        |           |

1 c is a positive odd integer.

d is a negative even integer.


Tick boxes to show what each of the following expressions are.

The first one has been done for you.

|           | odd | even  | negative | positive |            |
|-----------|-----|-------|----------|----------|------------|
|           |     | ✓     | <b>✓</b> |          | 5 <i>d</i> |
|           |     |       |          |          | c-d        |
|           |     |       |          |          | $d^3$      |
|           |     |       |          |          | $(c+d)^2$  |
|           |     | ••••• | •••••    |          |            |
|           |     |       |          |          |            |
| (3 marks) |     |       |          |          |            |

| 2     | Here is a formula.                                |
|-------|---------------------------------------------------|
|       | $P = \sqrt{QR - 1}$                               |
| 2 (2) | Decreases the formula to make Othe subject        |
| 2 (a) | Rearrange the formula to make $Q$ the subject.    |
|       |                                                   |
|       |                                                   |
|       |                                                   |
|       |                                                   |
|       | Answer                                            |
|       |                                                   |
|       |                                                   |
| 2 (b) | Work out the value of $Q$ when $P=$ 12 and $R=$ 5 |
|       |                                                   |
|       |                                                   |
|       |                                                   |
|       |                                                   |
|       | Answer (2 marks)                                  |
|       |                                                   |
|       |                                                   |
|       |                                                   |
|       |                                                   |
|       |                                                   |
|       |                                                   |
|       |                                                   |
|       |                                                   |
|       |                                                   |
|       |                                                   |
|       |                                                   |

AB is parallel to CD.



Not drawn accurately

| Is $PQ$ parallel to $SR$ ?         |                                         |
|------------------------------------|-----------------------------------------|
| You <b>must</b> show your working. |                                         |
|                                    |                                         |
|                                    |                                         |
|                                    |                                         |
|                                    | •••••                                   |
|                                    |                                         |
|                                    |                                         |
|                                    | • • • • • • • • • • • • • • • • • • • • |
|                                    |                                         |
|                                    |                                         |
|                                    |                                         |
|                                    |                                         |
|                                    |                                         |
|                                    | (4 marks)                               |

Turn over for the next question

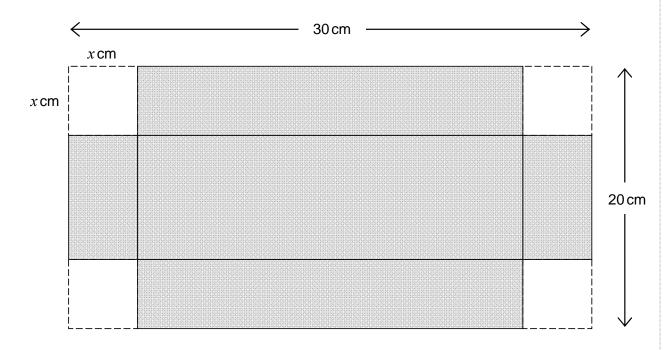
| 4     | Circle A has equation          | $x^2 + y^2 = 16$            |                            |
|-------|--------------------------------|-----------------------------|----------------------------|
|       | Circle B has equation (x +     | $6)^2 + (y - 8)^2 = 25$     |                            |
| 4 (a) | Work out the distance between  | the centres of the circles. |                            |
|       |                                |                             |                            |
|       |                                |                             |                            |
|       |                                |                             |                            |
|       | Answ                           | /er                         | (3 marks)                  |
|       |                                |                             |                            |
| 4 (b) | Circle the correct statement.  |                             |                            |
|       | The circles overlap            | The circles touch           | The circles do not overlap |
|       | Give a reason for your answer, | which may include a diag    | ram.                       |
|       |                                |                             |                            |
|       |                                |                             |                            |
|       |                                |                             |                            |
|       |                                |                             |                            |
|       |                                |                             |                            |
|       |                                |                             |                            |
|       |                                |                             |                            |
|       |                                |                             |                            |
|       |                                |                             |                            |
|       |                                |                             |                            |
|       |                                |                             |                            |
|       |                                |                             | (O 1 )                     |
|       |                                |                             | (2 marks)                  |
|       |                                |                             |                            |
|       |                                |                             |                            |

| 5 (a) | Write | $\frac{n^6}{(n^2)^5}$ | as a single power of n |
|-------|-------|-----------------------|------------------------|
|       |       | (n)                   |                        |

Answer ...... (2 marks)

| 5 (b) | Expand and simplify fully | $c^{\frac{3}{2}}(c^{\frac{1}{2}}+c^{-\frac{3}{2}})$ |
|-------|---------------------------|-----------------------------------------------------|
|       |                           |                                                     |

Answer ...... (2 marks)


**5 (c)** Solve 
$$d^{\frac{1}{4}} = \frac{1}{2}$$

.....

d= ...... (2 marks)

A net for an open cuboid is made by removing squares of edge x cm from the corners of a 30 cm by 20 cm rectangle.

Not drawn accurately

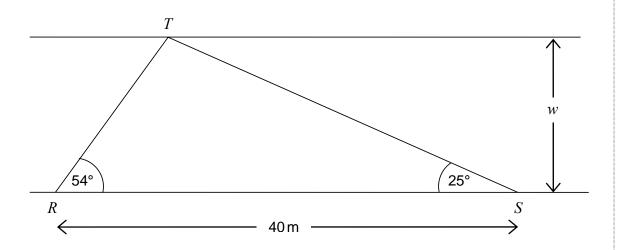


| e net. |
|--------|
| E      |

Give your answer in its simplest form.

| • • • • • • • • • • • • • • • • • • • • |                                         | • • • • • • • • • • • • • • • • • • • • |  |
|-----------------------------------------|-----------------------------------------|-----------------------------------------|--|
|                                         |                                         |                                         |  |
|                                         |                                         |                                         |  |
|                                         |                                         |                                         |  |
|                                         |                                         |                                         |  |
|                                         | • • • • • • • • • • • • • • • • • • • • |                                         |  |
|                                         |                                         |                                         |  |
|                                         |                                         |                                         |  |
|                                         |                                         |                                         |  |

Answer ...... (2 marks)


| 6 | (b) | Work out an expression for the volume of the cuboid.                                   |  |  |
|---|-----|----------------------------------------------------------------------------------------|--|--|
|   |     | Give your answer in the form $ax + bx^2 + cx^3$ where $a$ , $b$ and $c$ are constants. |  |  |
|   |     |                                                                                        |  |  |
|   |     |                                                                                        |  |  |
|   |     |                                                                                        |  |  |
|   |     |                                                                                        |  |  |
|   |     |                                                                                        |  |  |
|   |     |                                                                                        |  |  |
|   |     |                                                                                        |  |  |
|   |     |                                                                                        |  |  |
|   |     |                                                                                        |  |  |
|   |     | Answer                                                                                 |  |  |
|   |     |                                                                                        |  |  |
|   |     |                                                                                        |  |  |
|   |     | Turn over for the next question                                                        |  |  |

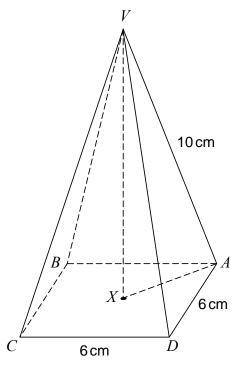
| 7 | The sides of a | canal are | straight a | nd parallel. |
|---|----------------|-----------|------------|--------------|
|   |                |           |            |              |

 ${\it R}$  and  ${\it S}$  are two points on one side of the canal.

T is a point on the other side.

Not drawn accurately

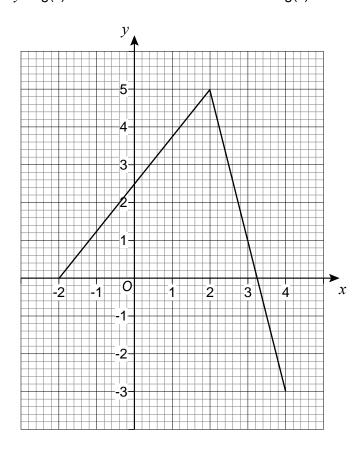



| 7   | (2) | Show that | ST - 32.07 m + | 0 1 0  | ianificant | figuroc  |
|-----|-----|-----------|----------------|--------|------------|----------|
| 7 ( | (a) | Show that | ST = 32.97 m t | .O 4 S | agnilicant | liquies. |

(3 marks)

| 7 (b) | Hence, work out the width of the canal, marked $\boldsymbol{w}$ on the diagram. |
|-------|---------------------------------------------------------------------------------|
|       |                                                                                 |
|       |                                                                                 |
|       |                                                                                 |
|       |                                                                                 |

 $w = \dots$  m (3 marks)


8 A pyramid has a square base ABCD of sides 6 cm. Vertex, V, is directly above the centre of the base, X.  $VA = 10 \, \mathrm{cm}$ 



Work out the height,  $V\!X$ , of the pyramid.

Answer ...... cm (4 marks)

**9** The graph of y = g(x) is shown for the full domain of g(x).



**9** (a) State the domain of g(x).

| Λ.     | (0 1 )        |
|--------|---------------|
| Answer | <br>(2 marks) |

**9 (b)** State the range of g(x).

**9** (c) Use the graph to solve g(x) = 1

**9** (d) Work out the gradient of the graph for  $2 \le x \le 4$ 

| 10 | М —   | $\begin{pmatrix} -2 \\ 0 \end{pmatrix}$ | 0  |
|----|-------|-----------------------------------------|----|
| 10 | IVI — | 0                                       | -2 |

**M** represents a single transformation.

Describe the transformation fully.

.....(3 marks)

**11 (a)** 
$$f(n) = n^2 + n$$

Show that 
$$f(n + 1) - f(n) = 2n + 2$$

| • • • | • • • | • • • | • • • | • • • | • • • | • • |       | • • | <br>    | • • | • • | • • | • • | • • | • • |     | • • |     | ••  | • • | • • |     |       | • • | • • | • • | • • |     | • •   |     | • • | • • |       |     | • • | • • | ••  | •• | •• | •• | •• |    | •• | •• |    | •• |    | •• | •• |
|-------|-------|-------|-------|-------|-------|-----|-------|-----|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|-----|-----|-----|-----|-----|-------|-----|-----|-----|-------|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|----|----|
|       |       |       |       |       |       |     |       |     | <br>    |     |     |     |     |     |     |     |     |     |     |     |     |     |       | • • | • • |     | • • |     | • • • |     | • • | • • |       |     |     |     |     |    |    |    |    |    |    |    |    |    |    |    |    |
|       |       |       |       |       |       |     |       |     | <br>    |     |     |     |     |     |     |     |     |     |     |     |     |     |       |     |     |     |     |     |       |     |     |     |       |     |     |     |     |    |    |    |    |    |    |    |    |    |    |    |    |
|       |       |       |       |       |       |     |       |     |         |     |     |     |     |     |     |     |     |     |     |     |     |     |       |     |     |     |     |     |       |     |     |     |       |     |     |     |     |    |    |    |    |    |    |    |    |    |    |    |    |
| • • • | • • • | • • • | • • • | • • • | •••   | • • | • • • | • • | <br>• • | ••  | • • | • • | • • | • • | • • | • • | • • | • • | • • | • • | • • | • • | • • • | • • | • • | • • | • • | • • | • •   | • • | • • | • • | • • • | • • | ••  | • • | • • | •• | •• | •• | •• | •• | •• | •• | •• | •• | •• | •• | •• |
|       |       |       |       |       |       |     |       |     | <br>    |     |     |     |     |     |     |     |     |     |     |     |     |     |       |     |     |     |     |     |       |     |     |     |       |     |     |     |     |    |    |    |    |    |    |    |    |    |    |    |    |

(2 marks)

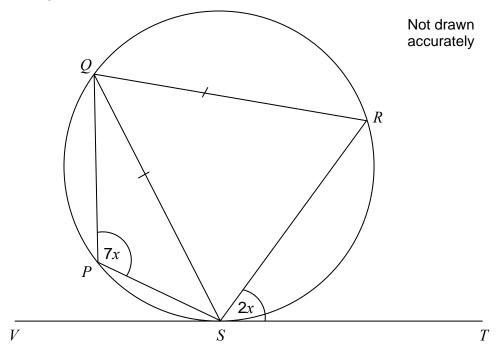
**11 (b)** The *n*th term of a sequence is  $n^2 + n$ 

Two consecutive terms in the sequence have a difference of 32.

Work out the two terms.



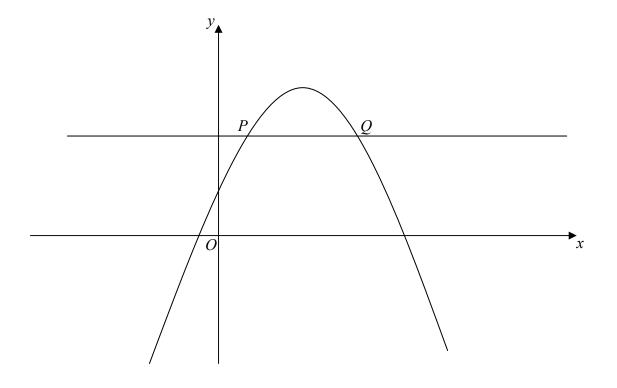
Answer ...... and ...... (4 marks)


| 12 (a) | Solve $\sqrt{35 + 4x^2} = 6$ |
|--------|------------------------------|
|        |                              |
|        |                              |
|        |                              |
|        |                              |
|        |                              |
|        | Answer(3 marks)              |

**12 (b)** Solve 
$$\frac{3}{8x} = \frac{x^2}{9}$$

| 13 $PQRS$ is a cyclic quadrilateral. |
|--------------------------------------|
|--------------------------------------|

$$QS = QR$$


VST is a tangent to the circle.



| Work out the value of x.           |
|------------------------------------|
| You <b>must</b> show your working. |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |

| Solve | $2 \sin \theta = -1.36$ for $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$ |       |
|-------|--------------------------------------------------------------------------------|-------|
|       |                                                                                | ••••  |
|       |                                                                                | ••••  |
|       |                                                                                |       |
|       |                                                                                |       |
|       |                                                                                |       |
|       |                                                                                |       |
|       |                                                                                |       |
|       |                                                                                |       |
|       |                                                                                |       |
|       |                                                                                |       |
|       |                                                                                |       |
|       |                                                                                |       |
|       |                                                                                |       |
|       | Answer (3 ma                                                                   | ırks) |
|       |                                                                                |       |
|       |                                                                                |       |
|       |                                                                                |       |
|       |                                                                                |       |
|       |                                                                                |       |
|       |                                                                                |       |
|       |                                                                                |       |
|       |                                                                                |       |

The graphs of  $y = 2 + 8x - 2x^2$  and y = 5 intersect at P and Q as shown in the sketch.



| Work out the length $PQ$ . |
|----------------------------|
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |

Answer ......(5 marks)

16 
$$\mathbf{P} = \begin{pmatrix} \sin x & \cos x \\ -\cos x & \sin x \end{pmatrix} \qquad \mathbf{Q} = \begin{pmatrix} \sin x & -\cos x \\ \cos x & \sin x \end{pmatrix}$$

Work out **PQ** 

Give your answer in its simplest form.

(3 marks)

| 17 | The first four terms of a quadratic sequence are |
|----|--------------------------------------------------|
|    |                                                  |

$$a + 5b$$

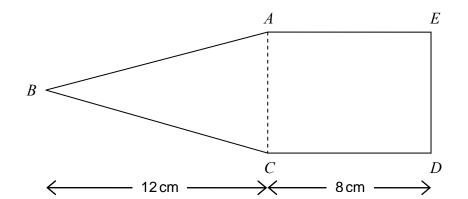
$$2a + 8b$$

$$4a + 17b$$

The *n*th term of the sequence is  $n^2 - 2n + 6$ 

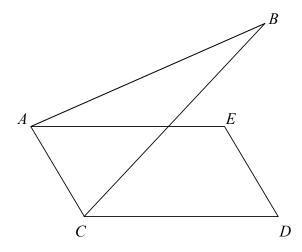
Work out the values of a and b.

| • • | · · · · | • • •   | · · ·   | • • •   | •     | - • • | - • • | ••  | •     | ••  |       | ••  | •••   |       | ••  | ••  | ••  | •••   |       | • • • | - • | •••   | •     | ••  | •   | · · · | • • | ••  |       | ••  |       | •••   | •     | ••  | •     | ••• |       | ••    | · · · | • • • | • • | •••   | • |
|-----|---------|---------|---------|---------|-------|-------|-------|-----|-------|-----|-------|-----|-------|-------|-----|-----|-----|-------|-------|-------|-----|-------|-------|-----|-----|-------|-----|-----|-------|-----|-------|-------|-------|-----|-------|-----|-------|-------|-------|-------|-----|-------|---|
|     |         |         |         |         |       |       |       |     |       |     |       |     |       |       |     |     |     |       |       |       |     |       |       |     |     |       |     |     |       |     |       |       |       |     |       |     |       |       |       |       |     |       |   |
|     |         |         |         |         |       |       |       |     |       |     |       |     |       |       |     |     |     |       |       |       |     |       |       |     |     |       |     |     |       |     |       |       |       |     |       |     |       |       |       |       |     |       |   |
|     |         |         |         |         |       |       |       |     |       |     |       |     |       |       |     |     |     |       |       |       |     |       |       |     |     |       |     |     |       |     |       |       |       |     |       |     |       |       |       |       |     |       |   |
|     |         |         |         |         |       |       |       |     |       |     |       |     |       |       |     |     |     |       |       |       |     |       |       |     |     |       |     |     |       |     |       |       |       |     |       |     |       |       |       |       |     |       |   |
|     |         |         |         |         |       |       |       |     |       |     |       |     |       |       |     |     |     |       |       |       |     |       |       |     |     |       |     |     |       |     |       |       |       |     |       |     |       |       |       |       |     |       |   |
|     |         |         |         |         |       |       |       |     |       |     |       |     |       |       |     |     |     |       |       |       |     |       |       |     |     |       |     |     |       |     |       |       |       |     |       |     |       |       |       |       |     |       |   |
|     |         |         |         |         |       |       |       |     |       |     |       |     |       |       |     |     |     |       |       |       |     |       |       |     |     |       |     |     |       |     |       |       |       |     |       |     |       |       |       |       |     |       |   |
|     |         |         |         |         |       |       |       |     |       |     |       |     |       |       |     |     |     |       |       |       |     |       |       |     |     |       |     |     |       |     |       |       |       |     |       |     |       |       |       |       |     |       |   |
| • • | • • • • | • • •   | • • •   | • • •   | • • • | •••   | • • • | • • | • • • | • • | • • • | • • | • • • | • • • | • • | • • | • • | • • • | • • • | • • • | • • | • • • | • • • | • • | • • | • • • | • • | • • | • • • | • • | • • • | • • • | • • • | • • | • • • | • • | • • • | • • • | • • • | • • • | • • | • • • | • |
|     |         |         |         |         |       |       |       |     |       |     |       |     |       |       |     |     |     |       |       |       |     |       |       |     |     |       |     |     |       |     |       |       |       |     |       |     |       |       |       |       |     |       |   |
|     |         |         |         |         |       |       |       |     |       |     |       |     |       |       |     |     |     |       |       |       |     |       |       |     |     |       |     |     |       |     |       |       |       |     |       |     |       |       |       |       |     |       |   |
|     |         |         |         |         |       |       |       |     |       |     |       |     |       |       |     |     |     |       |       |       |     |       |       |     |     |       |     |     |       |     |       |       |       |     |       |     |       |       |       |       |     |       |   |
|     |         |         |         |         |       |       |       |     |       |     |       |     |       |       |     |     |     |       |       |       |     |       |       |     |     |       |     |     |       |     |       |       |       |     |       |     |       |       |       |       |     |       |   |
|     |         |         |         |         |       |       |       |     |       |     |       |     |       |       |     |     |     |       |       |       |     |       |       |     |     |       |     |     |       |     |       |       |       |     |       |     |       |       |       |       |     |       |   |
|     |         |         |         |         |       |       |       |     |       |     |       |     |       |       |     |     |     |       |       |       |     |       |       |     |     |       |     |     |       |     |       |       |       |     |       |     |       |       |       |       |     |       |   |
|     |         |         |         |         |       |       |       |     |       |     |       |     |       |       |     |     |     |       |       |       |     |       |       |     |     |       |     |     |       |     |       |       |       |     |       |     |       |       |       |       |     |       |   |
|     |         |         |         |         |       |       |       |     |       |     |       |     |       |       |     |     |     |       |       |       |     |       |       |     |     |       |     |     |       |     |       |       |       |     |       |     |       |       |       |       |     |       |   |
| • • | • • • • | • • •   | • • •   | • • •   | • • • | •••   | • • • | • • | • • • | • • | • • • | • • | • • • | • • • | • • | • • | • • | • • • | • • • | • • • | • • | • • • | • • • | • • | • • | • • • | • • | • • | • • • | • • | • • • | • • • | • • • | • • | • • • | • • | • • • | • •   | • • • | • • • | • • | • • • | • |
|     |         |         |         |         |       |       |       |     |       |     |       |     |       |       |     |     |     |       |       |       |     |       |       |     |     |       |     |     |       |     |       |       |       |     |       |     |       |       |       |       |     |       |   |
|     |         |         |         |         |       |       |       |     |       |     |       |     |       |       |     |     |     |       |       |       |     |       |       |     |     |       |     |     |       |     |       |       |       |     |       |     |       |       |       |       |     |       |   |
|     |         |         |         |         |       |       |       |     |       |     |       |     |       |       |     |     |     |       |       |       |     |       |       |     |     |       |     |     |       |     |       |       |       |     |       |     |       |       |       |       |     |       |   |
|     |         | • • •   | • • •   | • • •   | • • • | • • • |       | • • |       | • • |       | • • | • • • |       | • • | • • | • • | • • • |       |       | • • | • • • |       | • • |     |       |     | • • |       |     |       | • •   |       | • • |       | • • |       | • •   |       | • • • |     | • •   |   |
|     |         |         |         |         |       |       |       |     |       |     |       |     |       |       |     |     |     |       |       |       |     |       |       |     |     |       |     |     |       |     |       |       |       |     |       |     |       |       |       |       |     |       |   |
|     |         |         |         |         |       |       |       |     |       |     |       |     |       |       |     |     |     |       |       |       |     |       |       |     |     |       |     |     |       |     |       |       |       |     |       |     |       |       |       |       |     |       |   |
|     |         |         |         |         |       |       |       |     |       |     |       |     |       |       |     |     |     |       |       |       |     |       |       |     |     |       |     |     |       |     |       |       |       |     |       |     |       |       |       |       |     |       |   |
|     |         |         |         |         |       |       |       |     |       |     |       |     |       |       |     |     |     |       |       |       |     |       |       |     |     |       |     |     |       |     |       |       |       |     |       |     |       |       |       |       |     |       |   |
| • • |         | • • • • | • • • • | • • • • | • • • | • • • | • • • | • • | • • • | • • | • • • | • • | • • • | • • • | • • | • • | • • | • • • | • • • | • • • | • • | • • • | • • • | • • | • • | • • • | • • | • • | • • • | • • | • • • | • • • | • • • | • • | • • • | • • |       | •••   | • • • | • • • | • • | • • • | • |
|     |         |         |         |         |       |       |       |     |       |     |       |     |       |       |     |     |     |       |       |       |     |       |       |     |     |       |     |     |       |     |       |       |       |     |       |     |       |       |       |       |     |       |   |
|     |         |         |         |         |       |       |       |     |       |     |       |     |       |       |     |     |     |       |       |       |     |       |       |     |     |       |     |     |       |     |       |       |       |     |       |     |       |       |       |       |     |       |   |


.....

*a* = .....

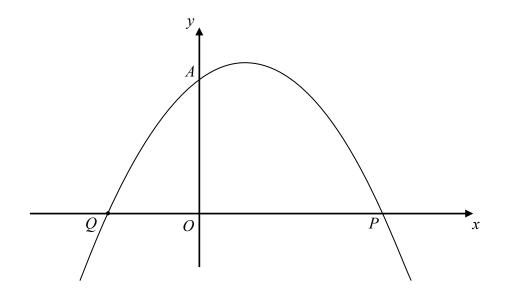
b = ..... (5 marks)


| 18 | Simplify fully | $24m - 9m^2$ |
|----|----------------|--------------|
| 10 | Simplify fally | $64 - 9m^2$  |

19 *ABCDE* is a piece of card in the shape of a rectangle and an isosceles triangle.



Not drawn accurately


ABCDE is folded along AC so that B is vertically above the midpoint of DE.



Work out the angle between the planes ABC and ACDE.

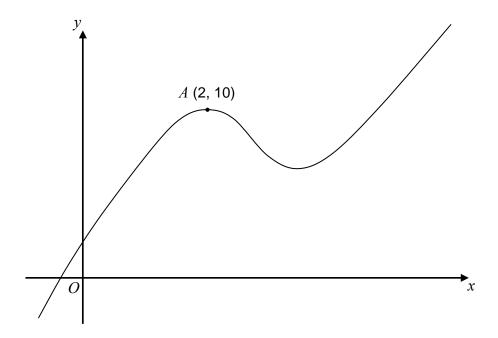
Answer ...... degrees (3 marks)

A sketch of the curve y = (x + 1)(2 - x) is shown. A(0, 2), P(2, 0) and Q are points on the curve.



**20 (a)** Write down the coordinates of point Q.

20 (b)


| Answer | (, | <br>) ( | (1 | mark |
|--------|----|---------|----|------|
|        |    |         |    |      |

| Show that the normal to the curve at $A$ intersects the curve again at $P$ . |
|------------------------------------------------------------------------------|
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |

(6 marks)

| 21 | Factorise fully $3a^4b - 2a^3b^2 - 5a^2b^3$ |
|----|---------------------------------------------|
|    |                                             |
|    |                                             |
|    |                                             |
|    |                                             |
|    | Answer                                      |
|    | Turn over for the next question             |

A sketch of y = f(x), where f(x) is a cubic function, is shown.



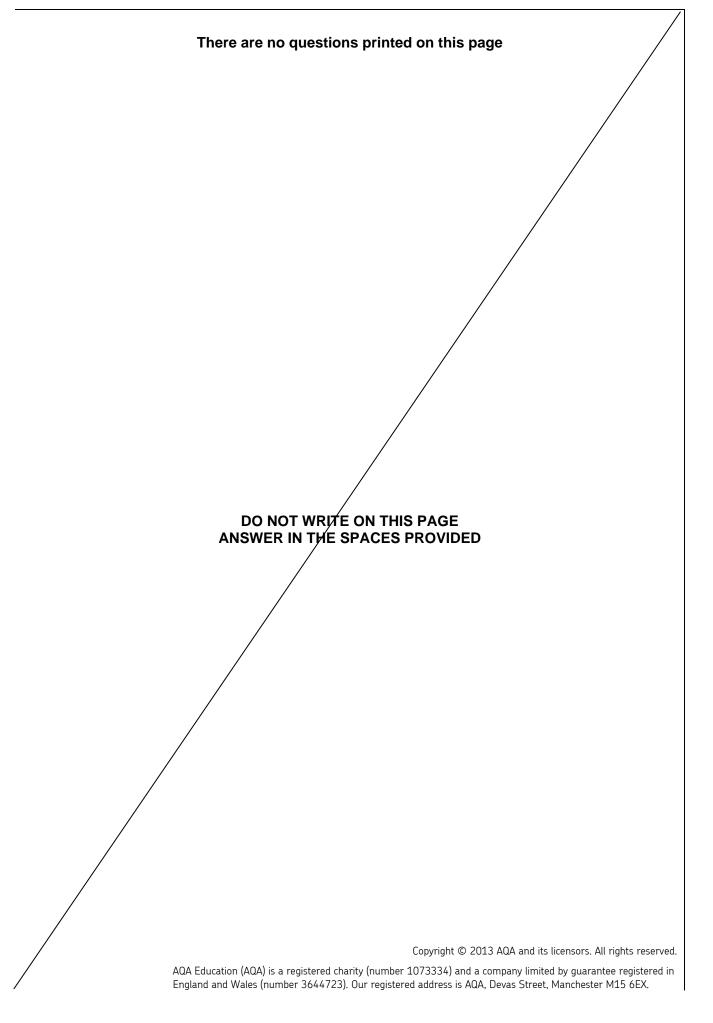
There is a maximum point at A (2,10).

**22 (a)** Write down the equation of the tangent to the curve at A.

Answer ...... (1 mark)

**22 (b)** Write down the equation of the normal to the curve at A.

Answer ...... (1 mark)


22 (c) Circle the word that describes the cubic function when x < 2

positive negative increasing decreasing

(1 mark)

| 22 (d) | The equation of the curve is $y = px^3 - 3x^2 + 8x + r$ where $p$ and $r$ are constants.     |
|--------|----------------------------------------------------------------------------------------------|
|        | Use the fact that there is a maximum point at $(2, 10)$ to work out the values $p$ and $r$ . |
|        |                                                                                              |
|        |                                                                                              |
|        |                                                                                              |
|        |                                                                                              |
|        |                                                                                              |
|        |                                                                                              |
|        |                                                                                              |
|        |                                                                                              |
|        |                                                                                              |
|        |                                                                                              |
|        |                                                                                              |
|        |                                                                                              |
|        | <i>p</i> =                                                                                   |
|        | $r = \dots $ (5 marks)                                                                       |

## **END OF QUESTIONS**

