

June 2009 6664 Core Mathematics C2 Mark Scheme

Question Number	Scheme		Marks
Q1	$\int \left(2x + 3x^{\frac{1}{2}}\right) dx = \frac{2x^2}{2} + \frac{3x^{\frac{3}{2}}}{\frac{3}{2}}$	M1	A1A1
	$\int_{1}^{4} \left(2x + 3x^{\frac{1}{2}}\right) dx = \left[x^{2} + 2x^{\frac{3}{2}}\right]_{1}^{4} = (16 + 2 \times 8) - (1 + 2)$	M1	
	= 29 (29 + C scores A0)	A1	(5) [5]
	1 st M1 for attempt to integrate $x \to kx^2$ or $x^{\frac{1}{2}} \to kx^{\frac{3}{2}}$.		
	$1^{\text{st}} A1$ for $\frac{2x^2}{2}$ or a simplified version.		
	$2^{\text{nd}} \text{ A1 for } \frac{3x^{\frac{3}{2}}}{\binom{3}{2}} \text{ or } \frac{3x\sqrt{x}}{\binom{3}{2}} \text{ or a simplified version.}$		
	Ignore + C , if seen, but two correct terms and an <u>extra non-constant</u> term scores M1A1 α	A0.	
	2 nd M1 for correct use of correct limits ('top' – 'bottom'). Must be used in a 'changed function', not just the original. (The changed function may have been found by differentiation).	y	
	Ignore 'poor notation' (e.g. missing integral signs) if the intention is clear.		
	No working: The answer 29 with no working scores M0A0A0M1A0 (1 mark).		

Question Number	Scheme	Marks
Q2 (a)	$(7 \times \times x)$ or $(21 \times \times x^2)$ The 7 or 21 can be in 'unsimplified' form.	M1
	$(7 \times \times x)$ or $(21 \times \times x^2)$ The 7 or 21 can be in 'unsimplified' form. $(2+kx)^7 = 2^7 + 2^6 \times 7 \times kx + 2^5 \times {7 \choose 2} k^2 x^2$ $= 128; +448kx, +672k^2 x^2 [\text{or } 672(kx)^2]$ (If $672kx^2$ follows $672(kx)^2$, isw and allow A1)	
	= 128; $+448kx$, $+672k^2x^2$ [or $672(kx)^2$] (If $672kx^2$ follows $672(kx)^2$, isw and allow A1)	B1; A1, A1 (4)
(b)	$1 + 6 \times 44 \times k = 677 k^{-1}$	M1
	k = 4 (Ignore $k = 0$, if seen)	A1 (2) [6]
(a)	The terms can be 'listed' rather than added. Ignore any extra terms. M1 for either the x term or the x^2 term. Requires correct binomial coefficient in any for with the correct power of x , but the other part of the coefficient (perhaps including powers of 2 and/or k) may be wrong or missing. Allow binomial coefficients such as $\binom{7}{1}$, $\binom{7}{2}$, $\binom{7}{2}$, $\binom{7}{2}$, $\binom{7}{2}$, $\binom{7}{2}$. However, $448 + kx$ or similar is M0. B1, A1, A1 for the simplified versions seen above. Alternative: Note that a factor 2^7 can be taken out first: $2^7 \left(1 + \frac{kx}{2}\right)^7$, but the mark scheme still apply Ignoring subsequent working (isw): Isw if necessary after correct working: e.g. $128 + 448kx + 672k^2x^2$ M1 B1 A1 A1 $= 4 + 14kx + 21k^2x^2$ isw (Full marks are still available in part (b)). M1 for equating their coefficient of x^2 to 6 times that of x^2 , to get an equation in k , or equating their coefficient of x^2 to 6 times that of x^2 , to get an equation in x^2 . Allow this M mark even if the equation is trivial, providing their coefficients from pahave been used, e.g. $6 \times 448k = 672k$, but beware $k = 4$ following from this, which is $\frac{An}{2}$ equation in $\frac{A}{2}$ alone is required for this M mark, so e.g. $6 \times 448kx = 672k^2x^2 \implies k = 4$ or similar is M0 A0 (equation in coefficients only never seen), but e.g. $6 \times 448kx = 672k^2x^2 \implies 6 \times 448k = 672k^2 \implies k = 4$ will get M1 A1 (as coefficients rather than terms have now been considered) The mistake $2\left(1 + \frac{kx}{2}\right)^7$ would give a maximum of 3 marks: M1B0A0A0, M1A1	rt (a) s A0.

Question Number	Scheme	Mar	ks
Q3 (a)	f(k) = -8	B1	(1)
(b)	$f(2) = 4 \Rightarrow 4 = (6-2)(2-k)-8$	M1	
	So $k = -1$	A1	(2)
(c)	$f(x) = 3x^2 - (2+3k)x + (2k-8) = 3x^2 + x - 10$	M1	
	=(3x-5)(x+2)	M1A1	(3)
			[6]
(b)	M1 for substituting $x = 2$ (not $x = -2$) and equating to 4 to form an equation in k . If the expression is expanded in this part, condone 'slips' for this M mark. Treat the omission of the -8 here as a 'slip' and allow the M mark. Beware: Substituting $x = -2$ and equating to 0 (M0 A0) also gives $k = -1$. Alternative; M1 for dividing by $(x - 2)$, to get $3x + (\text{function of } k)$, with remainder as a function of and equating the remainder to 4. [Should be $3x + (4 - 3k)$, remainder $-4k$]. No working: $k = -1$ with no working scores M0 A0. 1st M1 for multiplying out and substituting their (constant) value of k (in either order). The multiplying-out may occur earlier. Condone, for example, sign slips, but if the 4 (from part (b)) is included in the flex expression, this is M0. The 2^{nd} M1 is still available. 2^{nd} M1 for an attempt to factorise their three term quadratic (3TQ). A1 The correct answer, as a product of factors, is required. Allow $3\left(x - \frac{5}{3}\right)(x + 2)$ Ignore following work (such as a solution to a quadratic equation). If the 'equation' is solved but factors are never seen, the 2^{nd} M is not scored.		

Question Number	Scheme	Marks	
Q4 (a)	$x = 2$ gives 2.236 (allow AWRT) Accept $\sqrt{5}$	B1	
	x = 2.5 gives 2.580 (allow AWRT) Accept 2.58	B1 (2	2)
(b)	$x = 2.5$ gives 2.580 (allow AWRT) Accept 2.58 $\left(\frac{1}{2} \times \frac{1}{2}\right)$, $\left[(1.414 + 3) + 2(1.554 + 1.732 + 1.957 + 2.236 + 2.580)\right]$	B1,[M1A1f	t]
	= 6.133 (AWRT 6.13, even following minor slips)	A1 (4)
(c)	Overestimate	B1	
	'Since the trapezia lie <u>above the curve</u> ', or an equivalent explanation, or sketch of (one or more) trapezia above the curve on a diagram (or on the given diagram, in which case there should be reference to this). (Note that there must be some reference to a trapezium or trapezia in the explanation or diagram).	dB1 (2	2) 8]
(b)	B1 for $\frac{1}{2} \times \frac{1}{2}$ or equivalent. For the M mark, the first bracket must contain the 'first and last' values, and the second bracket (which must be multiplied by 2) must have no additional values. If the only mistomit one of the values from the second bracket, this can be considered as a slip and the be allowed. Bracketing mistake: i.e. $\left(\frac{1}{2} \times \frac{1}{2}\right)(1.414+3) + 2(1.554+1.732+1.957+2.236+2.580)$ scores B1 M1 A0 A0 unless the final answer implies that the calculation has been done correctly (then full marks can be given). Alternative: Separate trapezia may be used, and this can be marked equivalently. $\left[\frac{1}{4}(1.414+1.554) + \frac{1}{4}(1.554+1.732) + \dots + \frac{1}{4}(2.580+3)\right]$ 1st A1ft for correct expression, ft their 2.236 and their 2.580	stake is to M mark car	1
(c)	1 st B1 for 'overestimate', ignoring earlier mistakes and ignoring any reasons given. 2 nd B1 is dependent upon the 1 st B1 (overestimate).		

Ques		Scheme	Marks		
Q5		$324r^3 = 96$ or $r^3 = \frac{96}{324}$ or $r^3 = \frac{8}{27}$	M1		
	(b)	$324r^{3} = 96$ or $r^{3} = \frac{96}{324}$ or $r^{3} = \frac{8}{27}$ $r = \frac{2}{3} $ $a\left(\frac{2}{3}\right)^{2} = 324 \text{ or } a\left(\frac{2}{3}\right)^{5} = 96 a = \dots, $ $(*)$	A1cso (2)		
	(c)	$a(\frac{1}{3}) = 324 \text{of} a(\frac{1}{3}) = 90 a - \dots,$ $729(1 - \left[\frac{2}{3}\right]^{15})$	M1, A1 (2)		
		$S_{15} = \frac{729\left(1 - \left[\frac{2}{3}\right]^{15}\right)}{1 - \frac{2}{3}}, = 2182.00$ (AWRT 2180)	M1A1ft, (3)		
	(d)	$S_{\infty} = \frac{729}{1 - \frac{2}{3}}, \qquad = 2187$	M1, A1 (2) [9]		
	(a) (b)	The equation must involve multiplication/division rather than addition/subtraction. All Do not penalise solutions with working in decimals, providing these are correctly rounded or truncated to at least 2dp and the final answer 2/3 is seen. Alternative: (verification) M1 Using $r^3 = \frac{8}{27}$ and multiplying 324 by this (or multiplying by $r = \frac{2}{3}$ three time. All Obtaining 96 (cso). (A conclusion is not required). $324 \times \left(\frac{2}{3}\right)^3 = 96$ (no real evidence of calculation) is not quite enough and scores M1. M1 for the use of a correct formula or for 'working back' by dividing by $\frac{2}{3}$ (or by the from 324 (or 5 times from 96). Exceptionally, allow M1 also for using $ar^3 = 324$ or $ar^6 = 96$ instead of $ar^2 = 324$ or for dividing by r three times from 324 (or 6 times from 96) but no other exceptions as	for forming an equation for r^3 based on 96 and 324 (e.g. $96r^3 = 324$ scores M1). The equation must involve multiplication/division rather than addition/subtraction. Do not penalise solutions with working in decimals, providing these are correctly rounded or truncated to at least $2dp$ and the final answer $2/3$ is seen. $\frac{\text{tive}}{\text{tive}}$: (verification) Using $r^3 = \frac{8}{27}$ and multiplying 324 by this (or multiplying by $r = \frac{2}{3}$ three times). Obtaining 96 (cso). (A conclusion is not required). $\left(\frac{2}{3}\right)^3 = 96$ (no real evidence of calculation) is not quite enough and scores M1 A0. for the use of a correct formula or for 'working back' by dividing by $\frac{2}{3}$ (or by their r) twice $\frac{2}{3}$ (or 5 times from 96). onally, allow M1 also for using $ar^3 = 324$ or $ar^6 = 96$ instead of $ar^2 = 324$ or $ar^5 = 96$, or ding by r three times from 324 (or 6 times from 96) but no other exceptions are allowed. for use of sum to 15 terms formula with values of a and r . If the wrong power is used, e.g. 14, the M mark is scored only if the correct sum formula is stated. for a correct expression or correct ft their a with $r = \frac{2}{3}$. for awrt 2180, even following 'minor inaccuracies'.		
	(d)	M1 for adding 15 terms and 1 st A1ft for adding the 15 terms that ft from their a and $r = \frac{2}{3}$. M1 for use of correct sum to infinity formula with their a . For this mark, if a value of r different from the given value is being used, M1 can still be allowed providing $ r < 1$.			

Ques		Scheme	N	Marl	<s< th=""></s<>
Q6		$(x-3)^2 - 9 + (y+2)^2 - 4 = 12$ Centre is $(3, -2)$	M1 /	41,	A1
		$(x-3)^2 + (y+2)^2 = 12 + "9" + "4"$ $r = \sqrt{12 + "9" + "4"} = 5 \text{ (or } \sqrt{25} \text{)}$	M1 /	4 1	(5)
	(b)	$PQ = \sqrt{(7-1)^2 + (-5-1)^2}$ or $\sqrt{8^2 + 6^2}$	M1		
		= $10 = 2 \times \text{radius}$,diam. (N.B. For A1, need a comment or conclusion)	A1		(2)
		[ALT: midpt. of PQ $\left(\frac{7+(-1)}{2}, \frac{1+(-5)}{2}\right)$: M1, $=(3, -2) = \text{centre: A1}$]			
		[ALT: eqn. of $PQ 3x + 4y - 1 = 0$: M1, verify (3, -2) lies on this: A1]			
		[ALT: find two grads, e.g. PQ and P to centre: M1, equal \therefore diameter: A1] [ALT: show that point $S(-1, -5)$ or $(7, 1)$ lies on circle: M1			
	(0)	because $\angle PSQ = 90^{\circ}$, semicircle: diameter: A1]			
	(c)	R must lie on the circle (angle in a semicircle theorem) often <u>implied</u> by <u>a diagram</u> with R on the circle or by subsequent working)	B1		
		$x = 0 \Rightarrow y^2 + 4y - 12 = 0$	M1		
		(y-2)(y+6) = 0 $y =$ (M is dependent on previous M)	dM1		
		y = -6 or 2 (Ignore $y = -6$ if seen, and 'coordinates' are not required))	A1		(4) [11]
	(a)	1 st M1 for attempt to complete square. Allow $(x \pm 3)^2 \pm k$, or $(y \pm 2)^2 \pm k$, $k \ne 0$.			
		$1^{\text{st}} \text{A}1$ x-coordinate 3, $2^{\text{nd}} \text{A}1$ y-coordinate -2	_		
		2^{nd} M1 for a full method leading to $r =$, with their 9 and their 4, 3^{rd} A1 5 or $\sqrt{25}$	5		
		The 1 st M can be <u>implied</u> by $(\pm 3, \pm 2)$ but a full method must be seen for the 2 nd M. Where the 'diameter' in part (b) has <u>clearly</u> been used to answer part (a), no marks in (a))		
		but in this case the M1 (<u>not</u> the A1) for part (b) can be given for work seen in (a). Alternative	,		
		1^{st} M1 for comparing with $x^2 + y^2 + 2gx + 2fy + c = 0$ to write down centre $(-g, -f)$			
		directly. Condone sign errors for this M mark.			
		2^{nd} M1 for using $r = \sqrt{g^2 + f^2 - c}$. Condone sign errors for this M mark.			
	(c)	1^{st} M1 for setting $x = 0$ and getting a 3TQ in y by using eqn. of circle.			
		2 nd M1 (dep.) for attempt to solve a 3TQ leading to <u>at least one</u> solution for y.			
		Alternative 1: (Requires the B mark as in the main scheme) 1^{st} M for using (3, 4, 5) triangle with vertices (3, -2), (0, -2), (0, y) to get a linear or			
		quadratic equation in y (e.g. $3^2 + (y+2)^2 = 25$).			
		2^{nd} M (dep.) as in main scheme, but may be scored by simply solving a linear equation Alternative 2: (Not requiring realisation that R is on the circle)	1.		
		B1 for attempt at $m_{PR} \times m_{QR} = -1$, (NOT m_{PQ}) or for attempt at Pythag. in triangle M	PQR.		
		1^{st} M1 for setting $x = 0$, i.e. $(0, y)$, and proceeding to get a 3TQ in y. Then main scheme.			
		Alternative 2 by 'verification': B1 for attempt at $m_{PR} \times m_{QR} = -1$, (NOT m_{PQ}) or for attempt at Pythag. in triangle P_{PQ}			
		1 st M1 for trying $(0, 2)$.			
		2 nd M1 (dep.) for performing all required calculations.			
		A1 for fully correct working and conclusion.			

Ques Num		Scheme	Marks
Q7	(i)	$\tan \theta = -1 \Rightarrow \qquad \theta = -45, 135$	B1, B1ft
		$\sin \theta = \frac{2}{5} \Rightarrow \theta = 23.6, 156.4$ (AWRT: 24, 156)	B1, B1ft (4)
	(ii)	$4\sin x = \frac{3\sin x}{\cos x}$	M1
		$4\sin x \cos x = 3\sin x \implies \sin x (4\cos x - 3) = 0$	M1
		Other possibilities (after squaring): $\sin^2 x (16\sin^2 x - 7) = 0$, $(16\cos^2 x - 9)(\cos^2 x - 1) = 0$	
		$x = 0, 180 \underline{\text{seen}}$	B1, B1
		x = 41.4, 318.6 (AWRT: 41, 319)	B1, B1ft (6)
			[10]
	(i)	1 st B1 for -45 seen $(\alpha, \text{ where } \alpha < 90)$	
		2^{nd} B1 for 135 seen, or ft (180 + α) if α is negative, or (α – 180) if α is positive. If $\tan \theta = k$ is obtained from wrong working, 2^{nd} B1ft is still available.	
		3^{rd} B1 for awrt 24 (β , where $ \beta < 90$)	
		4^{th} B1 for awrt 156, or ft $(180 - \beta)$ if β is positive, or $-(180 + \beta)$ if β is negative. If $\sin \theta = k$ is obtained from wrong working, 4^{th} B1ft is still available.	
	(ii)	1^{st} M1 for use of $\tan x = \frac{\sin x}{\sin x}$. Condone $\frac{3\sin x}{\sin x}$.	
		$\cos x$ $3\cos x$ 2^{nd} M1 for correct work leading to 2 factors (may be implied).	
		1 st B1 for 0, 2 nd B1 for 180.	
		3 rd B1 for awrt 41 (γ , where $ \gamma < 180$) 4 th B1 for awrt 319, or ft (360 – γ).	
		If $\cos \theta = k$ is obtained from wrong working, 4 th B1ft is still available.	
		N.B. Losing $\sin x = 0$ usually gives a maximum of 3 marks M1M0B0B0B1B1 Alternative: (squaring both sides)	
		1 st M1 for squaring both sides and using a 'quadratic' identity.	
		e.g. $16\sin^2\theta = 9(\sec^2\theta - 1)$ 2^{nd} M1 for reaching a factorised form.	
		e.g. $(16\cos^2\theta - 9)(\cos^2\theta - 1) = 0$	
		Then marks are equivalent to the main scheme. Extra solutions, if not rejected, are penathe main scheme.	alised as in
		For both parts of the question:	
		Extra solutions outside required range: Ignore	
		Extra solutions inside required range: For each pair of B marks, the 2 nd B mark is lost if there are two correct values and one	or
		more extra solution(s), e.g. $\tan \theta = -1 \implies \theta = 45, -45, 135$ is B1 B0	O1
		Answers in radians: Loses a maximum of 2 B marks in the whole question (to be deducted at the first and	
		second occurrence).	

Question Number	Scheme	Mar	ks
	-3	M1	
Q8 (a)	$\log_2 y = -3 \Rightarrow y = 2^{-3}$ $y = \frac{1}{8} \text{or} 0.125$	A1	(2)
(b)	Ç	M1	()
	$32 = 2^5$ or $16 = 2^4$ or $512 = 2^9$ [or $\log_2 32 = 5\log_2 2$ or $\log_2 16 = 4\log_2 2$ or $\log_2 512 = 9\log_2 2$]	1011	
	[or $\log_2 32 = \frac{\log_{10} 32}{\log_{10} 2}$ or $\log_2 16 = \frac{\log_{10} 16}{\log_{10} 2}$ or $\log_2 512 = \frac{\log_{10} 512}{\log_{10} 2}$]		
	$\log_2 32 + \log_2 16 = 9$	A1	
	$(\log x)^2 = \dots$ or $(\log x)(\log x) = \dots$ (May not be seen explicitly, so M1 may be implied by later work, and the base may be 10 rather than 2)	M1	
	$\log_2 x = 3 \Rightarrow x = 2^3 = 8$	A1	
	$\log_2 x = -3 \Rightarrow x = 2^{-3} = \frac{1}{8}$	A1ft	(5) [7]
(a) (b)	M1 for getting out of logs correctly. If done by change of base, $\log_{10} y = -0.903$ is insufficient for the M1, but $y = 10.000$ scores M1. A1 for the exact answer, e.g. $\log_{10} y = -0.903 \Rightarrow y = 0.12502$ scores M1 (implied) Correct answer with no working scores both marks. Allow both marks for implicit statements such as $\log_2 0.125 = -3$. 1st M1 for expressing 32 or 16 or 512 as a power of 2, or for a change of base enabling evaluation of $\log_2 32$, $\log_2 16$ or $\log_2 512$ by calculator. (Can be implied by 5, 4 or 9 respectively). 1st A1 for 9 (exact). 2nd M1 for getting $(\log_2 x)^2 = \text{constant}$. The constant can be a log or a sum of logs. If written as $\log_2 x^2$ instead of $(\log_2 x)^2$, allow the M mark only if subsequent work implies correct interpretation. 2nd A1 for 8 (exact). Change of base methods leading to a non-exact answer score A0. 3rd A1ft for an answer of $\frac{1}{\text{their }8}$. An ft answer may be non-exact. Possible mistakes: $\log_2(2^9) = \log_2(x^2) \Rightarrow x^2 = 2^9 \Rightarrow x =$ scores M1A1(implied by 9)M0A0A0 $\log_2 512 = \log_2 x \times \log_2 x \Rightarrow x^2 = 512 \Rightarrow x =$ scores M0A0(9 never seen)M1A0A0 $\log_2 512 = \log_2 x \times \log_2 x \Rightarrow x^2 = 512 \Rightarrow x =$ scores M0A0(9 never seen)M1A0A0 $\log_2 48 = (\log_2 x)^2 \Rightarrow (\log_2 x)^2 = 5.585 \Rightarrow x = 5.145, x = 0.194$ scores M0A0M1A0 $\log_2 48 = (\log_2 x)^2 \Rightarrow (\log_2 x)^2 = 5.585 \Rightarrow x = 5.145, x = 0.194$ scores M0A0M1A0	A0.	

Ques		Scheme	Marks	
Q9	(a)	(Arc length =) $r\theta = r \times 1 = r$. Can be awarded by implication from later work, e.g. $3rh$ or $(2rh + rh)$ in the S formula. (Requires use of $\theta = 1$).	B1	
		(Sector area =) $\frac{1}{2}r^2\theta = \frac{1}{2}r^2 \times 1 = \frac{r^2}{2}$. Can be awarded by implication from later	B1	
		work, e.g. the correct volume formula. (Requires use of $\theta = 1$). Surface area = 2 sectors + 2 rectangles + curved face		
		(= $r^2 + 3rh$) (See notes below for what is allowed here)	M1	
		$Volume = 300 = \frac{1}{2}r^2h$	B1	
		Sub for h: $S = r^2 + 3 \times \frac{600}{r} = r^2 + \frac{1800}{r}$ (*)	A1cso (5)	
	(b)	$\frac{dS}{dr} = 2r - \frac{1800}{r^2}$ or $2r - 1800r^{-2}$ or $2r + -1800r^{-2}$	M1A1	
		$\frac{dS}{dr} = 0 \implies r^3 =, r = \sqrt[3]{900}, \text{ or AWRT 9.7} \qquad (\text{NOT } -9.7 \text{ or } \pm 9.7)$	M1, A1 (4)	
		$\frac{d^2S}{dr^2}$ = and consider sign, $\frac{d^2S}{dr^2}$ = 2 + $\frac{3600}{r^3}$ > 0 so point is a minimum	M1, A1ft (2)	
	(d)	$S_{\min} = (9.65)^2 + \frac{1800}{9.65}$		
		9.65 (Using their value of r , however found, in the given S formula)	M1	
		= 279.65 (AWRT: 280) (Dependent on full marks in part (b))	A1 (2) [13]	
	(a)	M1 for attempting a formula (with terms added) for surface area. May be incomplete or $\frac{1}{2} \left(\frac{1}{2} \left($	or wrong and	
	(h)	may have extra term(s), but must have an r^2 (or $r^2\theta$) term and an rh (or $rh\theta$) term.		
	(b)	In parts (b), (c) and (d), ignore labelling of parts 1^{st} M1 for attempt at differentiation (one term is sufficient) $r^n \to kr^{n-1}$		
		2^{nd} M1 for setting their derivative (a 'changed function') = 0 and solving as far as r^3 =	·	
		(depending upon their 'changed function', this could be $r =$ or $r^2 =$, etc.,		
		the algebra <u>must deal with a negative power</u> of r and should be sound apart from possible <u>sign</u> errors, so that $r^n =$ is consistent with their derivative).	om	
	(c)	M1 for attempting second derivative (one term is sufficient) $r^n \to kr^{n-1}$, and considering	ng	
		its sign. Substitution of a value of r is not required. (Equating it to zero is M0). Alft for a correct second derivative (or correct ft from their first derivative) and a val	id reason	
		(e.g. > 0), <u>and</u> conclusion. The actual <u>value</u> of the second derivative, if found, <u>can</u> be ig		
		score this mark as ft, their second derivative must indicate a minimum. Alternative:		
		M1: Find <u>value</u> of $\frac{dS}{dr}$ on each side of their value of r and consider sign.		
		A1ft: Indicate sign change of negative to positive for $\frac{dS}{dr}$, and conclude minimum.		
		Alternative:		
		M1: Find <u>value</u> of <i>S</i> on each side of their value of <i>r</i> and compare with their 279.65. A1ft: Indicate that both values are more than 279.65, and conclude minimum.		
		1111. Indicate that both ratios are more than 217.03, and conclude infinition.		