Que	estio	n	Expected Answers	Marks	Additional Guidance
1	a	i	 (atoms of the) same element OR same atomic no. OR no. of protons AND with different numbers of neutrons OR different masses ✓ 	1	IGNORE 'same number of electrons' DO NOT ALLOW 'different numbers of electrons' DO NOT ALLOW 'different relative atomic masses DO NOT ALLOW 'elements with different numbers of neutrons' without mention of same protons OR same atomic number
		ii	 same (number of) electrons (in the outer shell) OR same electron configuration OR structure ✓ 	1	 DO NOT ALLOW different number of protons IGNORE 'same number of protons' IGNORE 'they are both carbon' OR 'they are both the same element'
		III	mass of the isotope compared to 1/12th OR mass of the atom compared to 1/12th ✓ (the mass of a) carbon-12 OR ¹² C (atom) ✓	2	 IGNORE reference to average OR weighted mean (i.e. correct definition of relative atomic mass will score both marks) ALLOW mass of a mole of the isotope/atom with 1/12th the mass of a mole OR 12 g of ✓ carbon-12 ✓ ALLOW 2 marks for: 'mass of the isotope OR mass of the atom compared to ¹²C atom given a mass of 12.0' i.e. 'given a mass of 12' communicates the same idea as 1/12th.'

Question	Expected Answers	Marks	Additional Guidance
			ALLOW 12C OR C12
			ALLOW FOR 2 MARKS:
			mass of the isotope
			mass of 1/12th mass of carbon - 12
			i.e. fraction is equivalent to 'compared to'
			ALLOW 1 MARK FOR a mix of mass of atom and mass of mole of atoms, i.e. : 'mass of the isotope/mass of an atom compared with 1/12th the mass of a mole OR 12 g of carbon-12.'
b		5	Use annotations with ticks, crosses etc. for this part
			All five marking points are independent
	giant covalent (lattice) 🗸		ALLOW giant atomic OR giant molecular OR macromolecular
	layers ✓		ALLOW planes OR sheets Allow diagram showing at least two layers
	Each of the three properties below must be linked to explanation		
	<i>good conductor</i> - because it has mobile electrons OR delocalised electrons OR electrons can move ✓		Electron(s) must be spelt correctly ONCE
	high melting / boiling point - because strong OR covalent bonds have to be broken \checkmark		DO NOT ALLOW 'strong ionic bonds' OR strong metall bonds.
	soft - because there are van der Waals' forces OR		

Qu	Question		Expected Answers	Marks	Additional Guidance
			intermolecular forces OR weak bonds OR weak forces between the layers OR <i>soft</i> - because layers can slide ✓		
	С	i	0.0268 OR 0.027 OR 0.02675 mol ✓	1	NO OTHER ACCEPTABLE ANSWER
		ï	1.61 x 10 ²² ✓	1	ALLOW 1.6 x 10^{22} up to calculator value ALLOW ECF answer to (i) x 6.02 x 10^{23} ALLOW any value for N_A in the range: 6.0 x $10^{23} - 6.1 \times 10^{23}$
			Total	11	

Qu	esti	ion	Expected Answers	Marks	Additional Guidance
2	а	i	a shared pair of electrons 🗸	1	ALLOW any response that communicates electron pair ALLOW shared pairs
		ii		1	Must be ' <i>dot-and-cross</i> ' circles for outer shells NOT needed IGNORE inner shells Non-bonding electrons of N do not need to be shown as a pair.
		111	Shape: pyramidal OR (trigonal) pyramid ✓ Explanation: There are 3 bonded pairs and 1 lone pair ✓ Lone pairs repel more than bonded pairs ✓	3	ALLOW 'bonds' for 'bonded pairs' DO NOT ALLOW 'atoms repel' DO NOT ALLOW electrons repel ALLOW LP for 'lone pair' ALLOW BP for bonded pair
	b	i	1s²2s²2p ⁶ 3s²3p ⁶ ✓	1	ALLOW subscripts
		11	+ H H H H H H H H H H H H H	1	IGNORE inner shells IGNORE '+' sign BUT a DO NOT ALLOW '–' sign. Brackets and circles not required

F321

Question	Expected Answers	Marks	Additional Guidance
	tetrahedral ✓ 109.5° ✓	2	ALLOW 109–110°
iv	ions OR electrons cannot move in a solid ✓ ions can move OR are mobile in solution ✓	2	ALLOW ions can move in liquid DO NOT ALLOW ions can move when molten ALLOW 1 mark for: 'lons can only move in solution'
C i	$2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4 \checkmark$	1	ALLOW $2NH_4OH + H_2SO_4 \rightarrow (NH_4)_2SO_4 + 2H_2O$ ALLOW $NH_3 + H^+ \rightarrow NH_4^+$ ALLOW any correct multipleIGNORE state symbols
ii	when the H ⁺ in an acid is replaced by a metal ion OR an ammonium ion OR a + ion \checkmark	1	ALLOW H for H ⁺ ; ALLOW 'metal' for 'metal ion i.e.: H in an acid can be replaced by a metal
111	accepts a proton OR accepts H ⁺ ✓	1	ALLOW donates a lone pair ALLOW removes H ⁺ ALLOW forms OH ⁻ ions
iv	132.1 ✓	1	IGNORE units NO OTHER ACCEPTABLE ANSWER
	Total	15	

C	Quest	tion	Expected Answers	Marks	Additional Guidance
3	а	i	white precipitate OR white solid ✓		DO NOT ALLOW goes white / cloudy / milky / off-white DO NOT ALLOW creamy white precipitate ALLOW milky white precipitate
		ii	$Ag^{+}(aq) + CI^{-}(aq) \longrightarrow AgCI(s)$ Balanced equation correct \checkmark	2	ALLOW 2 marks $AgNO_3(aq) + Cl^-(aq) \longrightarrow AgCl(s) + NO_3^-(aq)$ (equation mark and state symbol mark)
			ALL state symbols correct ✓		ALLOW 1 mark for: AgNO ₃ (aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO ₃ (aq) (state symbol mark)
					ALLOW 1 mark for the state symbols for THESE balanced equation ONLY: $Ag^{2+}(aq) + 2CI^{-}(aq) \longrightarrow AgCl_{2}(s)$ $Ag(aq) + Cl(aq) \longrightarrow AgCl(s)$
		iii	(precipitate) dissolves OR disappears OR goes colourless OR goes clear ✓	1	ALLOW forms a solution
	b	i	removes or kills bacteria OR kills germs OR kills micro-organisms OR make it safe to drink OR sterilises water ✓	1	ALLOW to make water potable IGNORE virus DO NOT ALLOW 'purifies water' DO NOT ALLOW 'antiseptic'
		ii	it is toxic OR poisonous OR could form chlorinated hydrocarbons ✓	1	ALLOW forms carcinogens OR forms toxins DO NOT ALLOW harmful DO NOT ALLOW 'it causes cancer' (chlorine is not a carcinogen) DO NOT ALLOW 'irritates lungs'
	с	i	Cl ₂ is 0 AND HCl is −1 AND HClO is (+)1 ✓	1	ALLOW 1– ALLOW 1+

Question	Expected Answers	Marks	Additional Guidance
ii	It has been both oxidised and reduced OR Its oxidation state has increased and decreased ✓ it has been oxidised (from 0) to +1 AND it has been reduced (from 0) to -1 ✓ (These two points together subsume the first marking point)	2	ALLOW 'chlorine' OR 'it' DO NOT ALLOW chlorIDE IF CORRECT OXIDATION STATES IN (i), ALLOW 2 marks for: it is oxidised to form HCIO it is reduced to form HCI
iii	Cl_2 + 2NaOH → NaClO + NaCl + $H_2O \checkmark$	1	IGNORE state symbols
d i	$2CIO_2 \rightarrow CI_2 + 2O_2$ OR $CIO_2 \rightarrow \frac{1}{2}CI_2 + O_2 \checkmark$	1	IGNORE state symbols
ii	divides each % by correct A_r : i.e. $\frac{1.20}{1.0} : \frac{42.0}{35.5} : \frac{56.8}{16.0}$ OR 1.20, 1.18, 3.55 \checkmark HClO ₃ \checkmark	2	 ALLOW 1 mark for empirical formula of HCl₂O₆ (use of atomic numbers) ALLOW 1 mark for empirical formula of H₃Cl₃O (upside-down expression) ALLOW ECF for use of incorrect A_r values to get empirical formula but only if no over-rounding ALLOW 2 marks for correct answer of HClO₃
	the oxidation number of chlorine ✓	1	 ALLOW 'the oxidation state of chlorine OR oxidation number of chlorine is 5' DO NOT ALLOW 'it' instead of 'chlorine' DO NOT ALLOW 'the oxidation state OR number of chlorIDE is 5'
	Total	14	

Q	uesti	on	Expected Answers	Marks	Additional Guidance
4	а	i	Magnesium ions have a greater charge√ Magnesium has more (delocalised OR outer) electrons √ Magnesium has greater attraction between ions and electrons OR has stronger metallic bonds √	3	USE annotations with ticks, crosses, ecf, etc for this part. ALLOW REVERSE ARGUMENT e.g. sodium ions have a smaller charge ALLOW Mg ²⁺ / Mg ion / Na ion / Na ⁺ ion ALLOW 'charge density' as alternative to 'charge' ALLOW REVERSE ARGUMENT e.g. sodium has fewer electrons ALLOW REVERSE ARGUMENT e.g. sodium has less attractions between ions and electrons OR has weaker metallic bonds ✓
		ii	$Cl_2 \text{ OR } S_8$ has intermolecular OR van der Waals' forces \checkmark S_8 has stronger intermolecular forces OR van der Waals' forces than Cl_2 OR S_8 has more electrons \checkmark	2	ALLOW REVERSE ARGUMENT ie Cl ₂ has weaker intermolecular forces OR van der Waals' forces DO NOT ALLOW comparison involving covalent bonds ALLOW REVERSE ARGUMENT Cl ₂ has fewer electrons

Question	Expected Answers	Marks	Additional Guidance
b	nuclear charge increases/ protons increase ✓	3	USE annotations with ticks, crosses, ecf, etc for this part. Nuclear OR proton(s) OR nucleus spelt correctly ONCE
	electrons added to the same shell		IGNORE 'atomic number increases' IGNORE 'nucleus gets bigger' 'charge increases' is not sufficient ALLOW 'effective nuclear charge increases' OR 'shielded nuclear charge increases'
	OR screening OR shielding remains the same ✓		IGNORE reference to atomic radius staying the same
	greater attraction OR greater pull ✓		ALLOW shielding is similar DO NOT ALLOW extra shielding
			A comparison must be included: i.e. ' greater pull', ' more pull', 'held more tightly';
	Total	8	

Q	uesti	on	Expected Answers	Marks	Additional Guidance
5	а		BaO ✓ Ba ₃ N ₂ ✓	2	Treat any shown charges as working and ignore.
		<u> </u>			Treat B for Ba as a slip.
	b	i	$\frac{0.11}{137.3} \checkmark$	1	mark is for the working out which MUST lead to the correct answer of 8×10^{-4} up to calculator value
		ii	19.2 OR calculated answer to (b)(i) x 24000 ✓	1	ALLOW 19 up to calculator value.
		iii	8.0 x 10 ⁻³ OR calculated answer to (b)(i) x 10 ✓	1	ALLOW 8.01 x 10^{-3} up to calculator value.
		iv	any pH > 7 but <15 ✓	1	ALLOW a correct range of pH.
	С		Less barium to react OR some barium has already reacted ✓	1	ALLOW less volume because contains some BaO or Ba ₃ N ₂
	d		reactivity increases (down the group) ✓	5	USE annotations with ticks, crosses, ecf, etc for this part.
			atomic radii increase OR there are more shells ✓		DO NOT ALLOW more orbitals OR more sub-shells
			there is more shielding OR more screening ✓ the nuclear attraction decreases OR Increased shielding and distance outweigh the		More' is essential ALLOW 'more electron repulsion from inner shells'
			increased nuclear charge ✓		ALLOW 'nuclear pull' IGNORE any reference to 'effective nuclear charge'
			easier to remove (outer) electrons OR ionisation energy decreases ✓		ALLOW easier to form positive ion
			Total	12	

Grade Thresholds

Advanced GCE Chemistry A (H034) January 2009 Examination Series

Unit Threshold Marks

Unit		Maximum Mark	а	b	С	d	е	u
F321	Raw	60	46	40	34	28	23	0
	UMS	90	72	63	54	45	36	0

Specification Aggregation Results

The specification will be aggregated for the first time in June 2009.

For a description of how UMS marks are calculated see: <u>http://www.ocr.org.uk/learners/ums_results.html</u>

Statistics are correct at the time of publication.