OCR FINAL MARK SCHEME 4751 MEI PURE MATHS C1 JANUARY 2005 Section A

Section A								
1	2x - 6 < 6x + 15 or $-4x < 21$	M1	condone ≤ for both Ms					
	-21 < 4x or ft	M1	for inequality with $+$ ve x coefft;					
	x > -21/4 .o.e. (allow 21/-4 or better)	A1	if M0, SC1 for $-21/4$ found	3				
			-,					
2	$\overline{3V}$	3	NO 6 3 3V 3					
	$r = \sqrt[3]{\frac{3V}{4n}}$ o.e.		M2 for $r^3 = \frac{3V}{4p}$ o.e., with r^3 as subject,					
	v 4 p		M1 for cube root of their r^3	3				
3	(i) $[P] \leftarrow [Q]$	1	condone $Q \Rightarrow P$;					
I	$\begin{array}{c} \text{(i)} [P] \Leftrightarrow [Q] \end{array}$	1	in both parts, condone arrows not					
			implication symbols	2				
4	$1080 [x^3]$	4	M1 for each of 2^2					
-	- L- J		and 3^3 or $(3x)^3$,					
			and M1 for 10 or $(5\times4\times3)/(3\times2\times1)$ or for	4				
			1 5 10 10 5 1 seen but not for ${}^{5}C_{3}$					
5	(i) 9	2	1510105132000000000000000000000000000000					
0		-						
	(ii) 8 [condone –8 or ±8]	2	1					
		-	M1 for $16^{\frac{1}{4}} = 2$; M0 for $\sqrt[4]{4096}$	4				
6	y = -2x + c	M1	or M1 gradient of $L = -2$					
v	y = -2x + c 2 = $-2 \times 5 + c$ or ft their gradient o.e.	M1	M1 for $x = 0$, $y = 2 - 5 \times -2$					
	c = 12	A1	M1 for $y = 0$, $y = 2 - 3x - 2$ M1 for $y = 0$, $x = 5 - 2/(-2)$					
	(0, 12) or ft their line	1						
	(6, 0) or ft their line	1	no ft for $y = -2x + 1$ used					
		-	or B5 for both correct answers; condone	5				
			not given as coords if clear which axis					
7	a = 3, b = 9	1+1	or $(x-3)^2 - 9$ seen isw					
-								
	sketch of parabola correct way up	G1	correct shape, must extend above x axis					
	min at (3, -9) or ft their $(x - 3)^2 - 9$	G1	may be stated elsewhere; need not be					
			coords.					
	crossing x axis at 0 and 6	G1	may be stated elsewhere	5				
8	y = -4x + 19 cao	3	M1 for $m = (-1-7)/(5-3)$ o.e.					
			and M1 for $y - 7 =$ their $m(x - 3)$ o.e.					
	midpoint = $(4, 3)$	1	$ = \inf \left\{ \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{j=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{j=1}^$					
	verifying on line $x + 2y = 10$	1		5				
	, ,							
9	[9-2=]7	1						
	$1+\sqrt{2}$ $3+\sqrt{2}$							
	$\frac{1+\sqrt{2}}{3-\sqrt{2}} \times \frac{3+\sqrt{2}}{3+\sqrt{2}}$	M1						
			dep on prev M; M1 if one error [1 out of					
	$=\frac{3+2+3\sqrt{2}+\sqrt{2}}{7 \text{ or f.t}}$ o.e.	M2	5 terms, or 1 out of 3 or 4 terms if					
	= <u>7 or f t</u> o.e.		collected]					
			_					
	$=\frac{5}{7}+\frac{4}{7}\sqrt{2}$	A1	condone $\frac{5+4\sqrt{2}}{7}$, isw	5				
	/ /		/					
Section B								

Section B

OCH	OCR FINAL MARK SCHEME 4751 MEI PURE MATHS C1 JANUARY 2005								
10	i	$(x-2)^2 + (y-1)^2 = 5^2$	M2	M1 for one side correct; for backwards					
		$x^{2} - 4x + 4 + y^{2} - 2y + 1 = 25$ or	1	working: M1 for $(x - 2)^2 + (y - 1)^2$					
		$x^{2} - 4x + 4$ and $y^{2} - 2y + 1$ seen		seen, A1 correct completing of squares					
				shown; A1 for $(x-2)^2 + (y-1)^2 = 5^2$					
				or M1 for quote of <i>fgc</i> formula, A1 for					
				correct substn, A1 completion for c	3				
	ii	$y^2 - 2y - 20 = 0$	M1	subst of $x = 0$					
		$y = 2y - 20 = 0$ $y = \frac{2 \pm \sqrt{4 + 80}}{2}$	M1	attempt at use of formula or					
		$y = \frac{2 \pm \sqrt{4 + 80}}{2}$		completing square; dep on prev M1					
		2	A1	Pythag method: M1 for obtaining $\sqrt{21}$,					
		$=1\pm\sqrt{21}$		A1 for each y value	3				
				SC2 for $x = 2 \pm \sqrt{24}$ or $2 \pm 2\sqrt{6}$ from	-				
				use of $y = 0$					
	iii	subst of $(5, -3)$ in eqn for circle	1	or showing $AC = 5$					
	111	subst of $(3, -3)$ in equilor circle	1	of showing $AC = 3$					
		and of $C \Lambda = u \operatorname{diff} / u \operatorname{diff} \operatorname{ottompt}$	M1	<u>or M1 for $x = \frac{4y+27}{3}$ or $y = \frac{3x-27}{4}$</u>					
		grad. of CA = $y \operatorname{diff} / x \operatorname{diff} \operatorname{attempt}$	Al	$\underline{\text{or}}_{x}$ with for $x = \underline{3}$ or $y = \underline{4}$					
		=-4/3 o.e.		M1 for subst in eqn for circle					
		grad of tgt = $\frac{3}{4}$ or ft $-\frac{1}{\text{their grad.}}$	M1	M1 expn with at most one error					
		$y + 3 = \frac{3}{4} (x - 5)$ ft their grad	M1	A1 correctly obtaining $x = 5$ or $y = -3$					
		$4y + 12 = 3x - 15$ or $y = \frac{3}{4}x - \frac{27}{4}$	1	as only root					
		o.e. NB ans $4y = 3x - 27$ given		A1 double root so tgt	6				
11	i	f(1) attempted	M1	or M1 long divn as far as $x^2 + kx$ or (x	0				
11	1	I(1) attempted	1011	$(x^2 + bx - 8)$					
		1+1-10+8=0	A1	(x + bx - 8) A2 for $x^2 + 2x - 8$ oe					
			B1						
		one of $(x + 4)$ and $(x - 2)$ found the other	B1 B2	B2 for $(x + 4)(x - 2)$					
		the other	$\mathbf{D}\mathbf{Z}$	[mixed methods: mark one or other to					
		[if B0 then M1 for roots –4 and 2]	G1	adv. of cand.]					
		sketch of cubic the correct way up	G1		7				
		all ints with axes marked, $(2)^3 + (2)^2 + 10(2) + 0$	3	correct or ft from their factors M^2 for $y = f(y + 2)$ or attempt to subst	/				
	ii	$(x + 3)^{3} + (x + 3)^{2} - 10(x + 3) + 8$	3	M2 for $y = f(x + 3)$ or attempt to subst					
		or $(x + 7)(x + 2)(x + 1)$ oe		(x + 3) or intercepts $-7, -2, -1$ or M1					
		$eg x^3 + 10x^2 + 23x + 14$		for $y = f(x - 3)$ or subst $(x - 3)$ or					
		14 on ft from the in our 'CDM1	2	intercepts –1, 4, 5					
		14, or ft from their eqn if M1 or 1120 f	2	M1 for subst $x = 0$ in their eqn	5				
1.4	•	more earned; [20 from $f(x - 3)$]	1.44		5				
12	i	use of $b^2 - 4ac$ [may be in quad.	M1	or M1 for $(x - 3/2)^2 + k$ and M1 for k					
		formula]	A 1	$= 11 - (\text{their } 3/2)^2 [\text{or M1 for } y' = 2x -$					
		=9 – 44 oe	A1	3 and M1 use of $y' = 0$] and A1 for	2				
		[negative] so no [real] roots	A1	min $y = 35/4$ or showing min is +ve	3				
		[condone not showing a pos. value]	1.55						
	ii	(2x+5)(x-2) [>0]	M1	[M0 for formula]					
		2 and -2.5 oe identified	A1	or B2					
		sketch of parabola	M1	or algebraic argument					
		x > 2 or $x < -2.5$	A1	or B2; both needed; B1 if '=' included	4				
	iii	$x^2 - 3x + 11 = 2x^2 + x - 10$	M1	or subtraction to eliminate y					
		$[0 =] x^2 + 4x - 21$	M1	rearrange to 0; condone one error					
		[0 =] (x + 7)(x - 3)	M1	attempt to factorise or use formula					
		x = 3 or -7;	A1	or A1 for (3, 11) and A1 for (-7, 81);	5				
		y = 11 or 81	A1	M0 A0 for trial and imp.					
L		. *			1				

OCR FINAL MARK SCHEME 4751 MEI PURE MATHS C1 JANUARY 2005