Pearson Edexcel

Mark Scheme (Results)

Summer 2018

Pearson Edexcel International GCSE In Mathematics A (4MA1) Paper 2HR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code 4MA1_2HR_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

International GCSE Maths

Apart from questions 4d, 17a, 17b, 18, 19, 23 (where the mark scheme states otherwise) the correct answer, unless clearly obtained from an incorrect method, should be taken to imply a correct method.

Question	Working	Answer	Mark		Notes
1	eg $\frac{x+10+y}{3}=11$ oe or $y-x=7$ oe $3 \times 11(=33)$	$x=8, y=15$	2	M1 for one correct equation in x and y OR finding the total of $x, 10$ and y OR two numbers with a sum of 23 OR two numbers with a range of 7 Note: condone non-integers for the award of M1	
				A1	
					Total 2 marks

$\mathbf{2}$	$($ area $=) 2 \times 1.25(=2.5)$			

Question	Working	Answer	Mark		Notes
3	eg (6.3 $\times 1000$) $\div 210(=30)$	343.2(0)	4	M1	for a method to find the number of candles, could work in grams or kg
	$\frac{2}{5} \times 130 " \times 13(=156)$				for a method to find money made from the $\$ 13$ candles
	$\left(1-\frac{2}{5}\right) \times " 30 " \times 0.8 \times 13(=187.20)$			M1	for a method to find money made from the reduced candles
				A1	
					Total 4 marks

4 (a)	$3 c-21+6 c+8$	$9 c-13$	2	$\begin{array}{\|l} \hline \text { M1 } \\ \text { A1 } \end{array}$	For 3 or 4 terms correct
(b)	$x^{2}-2 x+7 x-14$	$x^{2}+5 x-14$	2	M1	For 3 correct terms or for 4 correct terms ignoring signs or for $x^{2}+5 x+k$ for any non-zero value of k or for $\ldots .+5 x-14$
(c)		$7 y(4 y-3)$	2	B2	B1 for $y(28 y-21)$ or $7\left(4 y^{2}-3 y\right)$ or $7 y(4 y+k)$ or $7 y(a y-3)$
(d)	eg $7 x-2=4(3 x+1)$ oe	$-\frac{6}{5}$	3	M1	correct first step
	$7 x-12 x=4+2$ oe or $-2-4=12 x-7 x$ oe			M1	for rearranging the x terms on one side and the numerical terms on the other. ft rearranging their expansion $a x+b=c x+d$ eg $7 x-2=12 x+4$
				A1	oe, dep on M1
					Total 9 marks

Question	Working	Answer	Mark	Notes
5	$\begin{aligned} & 6 \mathrm{~h} 42 \mathrm{~min}=6.7 \mathrm{~h} \text { or } 6 \frac{42}{60} \text { oe or } \\ & 402(\text { mins }) \text { or } 24120(\mathrm{secs}) \text { OR } 10.8(33 \ldots)(\mathrm{km}) \end{aligned}$	4355	3	B1 for converting 6h 42min into hours or minutes or seconds OR finding distance travelled in 1 minute
	$\begin{aligned} & \text { eg } 6.7 \times 650 \text { or }(402 \times 650) \div 60 \text { or } \\ & (24120 \times 650) \div 3600 \text { or } 6 \times 650+42 \times 10.8 \end{aligned}$			M1 use of $s \times t$, allow $6.42 \times 650(=4173)$
				A1
				Total 3 marks

Question	Working	Answer	Mark	Notes	
7 (a)		$5 y^{4}$	2	B2	B1 for fully simplifying terms in x or terms in y
(b)	$h-f=3 e$ or $\frac{\mathrm{h}}{3}=\mathrm{e}+\frac{\mathrm{f}}{3}$ or $\frac{\mathrm{h}-\mathrm{f}}{3}$	$\mathrm{e}=\frac{\mathrm{h}-\mathrm{f}}{3}$	2	M1	
				A1	oe, accept $e=\frac{f-h}{-3}$
					Total 4 marks

$\mathbf{8}$	$160^{2}+200^{2}(=65600)$		3	M1
	$\sqrt{160^{2}+200^{2}}$			M1
		256		A1

$\mathbf{9}$	Interior angle of pentagon $(180 \times 3) \div 5(=108)$ oe	4	M1 or exterior angle of pentagon $=\frac{360}{5}(=72)$	
	Interior angle of octagon $(180 \times 6) \div 8(=135)$ oe			M1 or exterior angle of octagon $=\frac{360}{8}(=45)$

Question	Working	Answer	Mark		Notes
10	24.3-16 (= 8.3)	123.6	4	M1	Forming a right angled triangle with 24.3 - 16 on one side, 8.3 may be seen on diagram
	$\tan y=\frac{12.5}{\text { "8.3" }} \text { or } \tan z=\frac{" 8.3^{" 1}}{12.5}$ OR $\sqrt{" 8.3^{" 2}+12.5^{2}}(=15.004 \ldots)$ and $\sin y=\frac{12.5}{\text { "15.0" }}$ or $\sin z=\frac{\text { " } 8.3^{"}}{\text { "15.0" }}$ or $\cos y=\frac{\text { " } 8.3^{\prime \prime}}{\text { "15.0" }}$ or $\cos z=\frac{12.5}{115.0^{\prime \prime}}$			M1	for a correct trig statement involving angle CDE or DCE where E is on the line $A D$ and $C E$ is perpendicular to $A D$
				M1	complete method to find angle CDE or DCE
				A1	123.5-123.6
					Total 4 marks

Question	Working	Answer	Mark	Notes	
11 (a)		$100<m \leq 200$	1	B1	
(b)		10, 46, 80, 100, 115, 120	1	B1	
(c)		Correct cumulative frequency graph	2	B2	fully correct cf graph - points at ends of intervals and joined with curve or line segments If not B 2 then B 1 (ft from a table with only one arithmetic error) for 5 or 6 (ft from a table with only one arithmetic error) of their points at ends of intervals and joined with curve or line segments OR for 5 or 6 points plotted correctly at ends of intervals not joined OR for 5 or 6 of their points from table plotted consistently within each interval (not at upper ends of intervals) at their correct heights and joined with smooth curve or line segments
(d)	eg reading of 155 and 350 stated or indicated on graph	175-205	2	M1ft A1ft	For use of 30 and 90 , or 30.25 and 90.75 , or ft from a cf graph provided method is shown. from their cf graph
(e)		12 or 13	2	M1 A1	For reading off cf from money spent at $£ 450$ (108 ft) ft from cf graph
					Total 8 marks

Question	Working	Answer	Mark		Notes
12	$\begin{aligned} & \text { eg }(C O A=) 360-(2 \times 90+74)(=106) \\ & \text { or }(C O A=) 180-74(=106) \text { or } O A B=90 \text { or } O C B \\ & =90 \end{aligned}$	53	3	M1	Fully correct method to find COA or $O A B$ or $O C B$
	"106" $\div 2$			M1	
				A1	values may be seen on diagram throughout
				Total 3 marks	

$\mathbf{1 3}$	eg $m=\frac{1}{2}$ or $y=\frac{1}{2} x+c$		4	M1 for gradient $=\frac{1}{2}$
	eg $7=\frac{1}{2} \times 4+c$ or $y-7=\frac{1}{2}(x-4)$		M1 for substituting (4,7) into an equation with gradient $=\frac{1}{2}$	
	eg $\frac{1}{2} x+5=0$ or $-7=\frac{1}{2}(x-4)$		$(-10,0)$	M1 Inputting $y=0$ into their correct equation
			A1SC B2 for an answer of $(18,0)$ or $(0.5,0)$ oe or $(7.5,0)$ oe	
			Total 4 marks	

Question	Working	Answer	Mark		Notes
14	$2^{7}=4^{2 x} \times 2^{x}$ or $128=\left(2^{2}\right)^{2 x} \times 2^{x}$		3	M1	Replacing 128 by 2^{7} or 4 by 2^{2}
	$7=2(2 x)+x$			M1	
				A1	oe
				Total 3 marks	

$\mathbf{1 5}$ (i)		19	1	B1	
(ii)		5	1	B1	
	(iii)		29	1	B1

Question	Working	Answer	Mark	Notes
16		$\frac{25}{56}$	4	$\begin{array}{ll} \text { M1 } & \text { for } \frac{a}{8} \times \frac{b}{7} \times \frac{c}{6} \\ & \text { where } a<8, b<7, c<6 \\ \hline \end{array}$
	$\begin{aligned} & \text { eg } \mathrm{P}(0, \mathrm{o}, \mathrm{o})=\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6}\left(=\frac{60}{336}=\frac{5}{28}=0.178(571 \ldots)\right) \\ & \text { or } \mathrm{P}(\mathrm{e}, \mathrm{e}, \mathrm{o})=\frac{3}{8} \times \frac{2}{7} \times \frac{5}{6}\left(=\frac{30}{336}=\frac{5}{56}=0.0892(857 \ldots)\right) \end{aligned}$			M1 for a complete method to find $\mathrm{P}(\mathrm{o}, \mathrm{o}, \mathrm{o})$ or $\mathrm{P}(\mathrm{o}, \mathrm{e}, \mathrm{e})$ or $P(e, o, e)$ or $P(e, e, o)$
				M1 for a complete method to find $P(0,0, o)$ and at least one of $P(o, e, e), P(e, o, e), P(e, e, o)$
				$\begin{aligned} & \text { A1 } \frac{150}{336}, 0.446(428571 . .) \\ & \text { SC B2 for } \frac{260}{512}\left(=\frac{65}{128}=0.507(8125)\right), \text { B1 } \\ & \text { for } \frac{170}{512}\left(=\frac{85}{256}=0.332(03125)\right) \end{aligned}$
				Total 4 marks

Question	Working		Answer	Mark	Notes
18	$2(2 y-3)^{2}+3 y^{2}=14$ or	$2 x^{2}+3\left(\frac{x+3}{2}\right)^{2}=14$		5	M1 correct first step eg substitution
	$11 y^{2}-24 y+4=0$	$11 x^{2}+18 x-29=0$			A1 for a correct simplified quadratic
	$\begin{aligned} & (11 y-2)(y-2)(=0) \\ & \text { or } \frac{24 \pm \sqrt{(-24)^{2}-4 \times 11 \times 4}}{2 \times 11} \end{aligned}$	$\begin{aligned} & (11 x+29)(x-1)(=0) \\ & \text { or } \frac{-18 \pm \sqrt{18^{2}-4 \times 11 \times-29}}{2 \times 11} \end{aligned}$			M1 (dep on M1) first step to solve their 3 term quadratic
	$y=\frac{2}{11}$ or $y=2($ need both $)$	$x=\frac{-29}{11}$ or $x=1$ (need both)			A1
			$x=\frac{-29}{11}, y=\frac{2}{11}$		A1 Dep on first M1 Must be paired correctly Must be 2 dp or better
			$x=1, \quad y=2$		
					Total 5 marks

Question	Working	Answer	Mark		Notes
19	8.35, 8.45, 6.25, 6.35, 0.265, 0.275	8.3	3	M1	For sight of $8.35,8.45,6.25,6.35$, 0.265 or 0.275
	$(\mathrm{a}=) \frac{8.45-6.25}{0.265}$			M1	$\mathrm{a}=\frac{\mathrm{UB}-\mathrm{LB}_{1}}{\mathrm{LB}_{2}}$ Where $8.4<\mathrm{UB} \leq 8.45$ and $6.25 \leq \mathrm{LB}_{1}<6.3$ and $0.265 \leq L B_{2}<0.27$
				A1	8.3(018867...) dep on M2
				Total 3 marks	

Question	Working	Answer	Mark	Notes
$\mathbf{2 1}$ (a)		$(-2,-2),(1,6),(4,-2)$ Plotted and joined	2	B2 (b)

22	$\begin{aligned} & \frac{(2 x+5)(2 x-5)}{(5 x+7)(x-1)} \times \frac{2(2 x-5)-3(x-3)}{(x-3)(2 x-5)} \\ & \frac{(2 x+5)(2 x-5)}{(5 x+7)(x-1)} \times \frac{x-1}{(x-3)(2 x-5)} \\ & \frac{2 x+5}{(5 x+7)(x-3)} \end{aligned}$	$\frac{2 x+5}{(5 x+7)(x-3)}$	4	M1	For $4 x^{2}-25=(2 x+5)(2 x-5)$ or $5 x^{2}+2 x-7=(5 x+7)(x-1)$
					$\frac{2}{x-3}-\frac{3}{2 x-5}=\frac{2(2 x-5)-3(x-3)}{(x-3)(2 x-5)} \text { oe }$
				M1	$\frac{(2 x+5)(2 x-5)}{(5 x+7)(x-1)} \times \frac{x-1}{(x-3)(2 x-5)}$ oe may be partially simplified
				A1	Denominator may be expanded eg $\frac{2 x+5}{5 x^{2}-8 x-21}$ isw for incorrect denominator expansion
					Total 4 marks

Question	Working	Answer	Mark	Notes
24 (a)		$11-(x+2)^{2}$	2	M1 For $11-(x+q)^{2}$ or $p-(x+2)^{2}$
				A1 fully correct, accept $p=11, q=2$
(b)	$(y+3+2)^{2}=11$ or $11-(y+3+2)^{2}$		3	M1 substituting $x=y+3$ into their $p-(x+q)^{2}$
	$y+3+2= \pm \sqrt{11}$			M1
		$-5 \pm \sqrt{11}$		A1 Both answers correct, ft their answer from (a) eg $-(3+" q ") \pm \sqrt{" p "}$
ALT (b)	Alternative scheme			M2 for $-y^{2}-10 y-14=0$ or $y^{2}+10 y+14=0$
		$-5 \pm \sqrt{11}$		A1 cao, both values correct
(c)		$(-1,3)$	1	B1 cao
				Total 6 marks

