Mark Scheme 4767 June 2005

GENERAL INSTRUCTIONS

Marks in the mark scheme are explicitly designated as M, A, B, E or G.

M marks ("method") are for an attempt to use a correct method (not merely for stating the method).

A marks ("accuracy") are for accurate answers and can only be earned if corresponding **M** mark(s) have been earned. Candidates are expected to give answers to a sensible level of accuracy in the context of the problem in hand. The level of accuracy quoted in the mark scheme will sometimes deliberately be greater than is required, when this facilitates marking.

B marks are independent of all others. They are usually awarded for a single correct answer. Typically they are available for correct quotation of points such as 1.96 from tables.

E marks ("explanation") are for explanation and/or interpretation. These will frequently be sub divisible depending on the thoroughness of the candidate's answer.

G marks ("graph") are for completing a graph or diagram correctly.

- Insert part marks in **right-hand** margin in line with the mark scheme. For fully correct parts tick the answer. For partially complete parts indicate clearly in the body of the script where the marks have been gained or lost, in line with the mark scheme.
- Please indicate incorrect working by ringing or underlining as appropriate.
- Insert total in **right-hand** margin, ringed, at end of question, in line with the mark scheme.
- Numerical answers which are not exact should be given to at least the accuracy shown. Approximate answers to a greater accuracy *may* be condoned.
- Probabilities should be given as fractions, decimals or percentages.
- FOLLOW-THROUGH MARKING SHOULD NORMALLY BE USED WHEREVER POSSIBLE. There will, however, be an occasional designation of 'c.a.o.' for "correct answer only".
- Full credit MUST be given when correct alternative methods of solution are used. If errors occur in such methods, the marks awarded should correspond as nearly as possible to equivalent work using the method in the mark scheme.
- The following notation should be used where applicable:

(i)	Uniform average rate of occurrence;	E1,E1 for suitable assumptions	
	Successive arrivals are independent.	assumptions	
	Suitable arguments for/against each assumption: Eg Rate of occurrence could vary depending on the weather (any reasonable suggestion)	E1, E1 must be in context	4
(ii)	Mean = $\frac{\Sigma xf}{n} = \frac{39 + 40 + 36 + 32 + 15}{100} = \frac{162}{100} = 1.62$	B1 for mean <i>NB answer given</i>	
	Variance = $\frac{1}{n-1} \left(\Sigma f x^2 - n x^2 \right)$	M1 for calculation	
	$=\frac{1}{99}(430-100\times1.62^2)=1.69$ (to 2 d.p.)	A1	3
(iii)	Yes, since mean is close to variance	B1FT	1
(iv)	$P(X=2) = e^{-1.62} \frac{1.62^2}{2!}$ = 0.260 (3 s.f.)	M1 for probability calc. M0 for tables unless interpolated	
		A1	
	<i>Either:</i> Thus the expected number of 2's is 26 which is reasonably close to the observed value of 20.	B1 for expectation of 26 or r.f. of 0.2 E1	4
	<i>Or</i> : This probability compares reasonably well with the relative frequency 0.2		
(v)	$\lambda = 5 \times 1.62 = 8.1$	B1FT for mean (SOI)	
	Using tables: $P(X \ge 10) = 1 - P(X \le 9)$	M1 for probability from using tables to find $1 - P(X \le 9)$	3
	= 1 - 0.7041 = 0.2959	A1 FT	
(vi)	Mean no. of items in 1 hour = $360 \times 1.62 = 583.2$ Using Normal approx. to the Poisson, $X \sim N(583.2, 583.2)$:	B1 for Normal approx. with correct parameters (SOI)	
	$P(X \le 550.5) = P\left(Z \le \frac{550.5 - 583.2}{\sqrt{583.2}}\right)$	B1 for continuity corr.	4
	$= P(Z \le -1.354) = 1 - \Phi(1.354) = 1 - 0.9121$	M1 for probability	

= 0.0879 (3 s.f.) using correct tail A1 CAO, (but FT wrong or omitted CC)	
	19

	V = N(28.5.16)		
(i)	$X \sim N(38.5,16)$ $P(X > 45) = P\left(Z > \frac{45 - 38.5}{4}\right)$	M1 for standardizing	
	= P(Z > 1.625)	A1 for 1.625	
	$= 1 - \Phi(1.625) = 1 - 0.9479$	M1 for prob. with	4
	= 0.0521 (3 s.f.) <i>or</i> 0.052 (to 2 s.f.)	tables and correct tail A1 CAO (min 2 s.f.)	
(ii)	From tables $\Phi^{-1}(0.90) = 1.282$		
	$\frac{x-38.5}{4} = -1.282$	B1 for 1.282 seen M1 for equation in <i>x</i> and negative <i>z</i> -value	
	$x = 38.5 - 1.282 \times 4 = 33.37$		3
	So 33.4 should be quoted	A1 CAO	5
	$Y \sim N(51.2, \sigma^2)$		
(iii)	From tables $\Phi^{-1}(0.75) = 0.6745$	B1 for 0.6745 seen M1 for equation in σ	
	$\frac{55-51.2}{\sigma} = 0.6745$	with z-value	
	σ σ	A1 NB answer given	3
	$3.8 = 0.6745 \sigma$		C
	$\sigma = 5.63$		
(iv)	0.12 foo	G1 for shape	
	0.1 0.08 0.06	G1 for means, shown explicitly or by scale	
	0.04 0.02 025 30 35 40 45 60 65 60 65 70	G1 for lower max height in diesel G1 for higher variance in diesel	4
(v)	P(Diesel > 45) = P $\left(Z > \frac{45 - 51.2}{5.63}\right)$	M1 for prob. calc. for diesel	

=	$P(Z > -1.101) = \Phi(1.101) = 0.8646$		
	(At least one over 45) = 1 – P(Both less than 45)	M1 for correct structure	4
	$1 - (1 - 0.0521) \times (1 - 0.8646) = 1 - 0.9479 \times 0.1354 = 0.8717$	M1 <i>dep</i> for correct probabilities	
P(B allow correct alternatives based on: D over, P under)+P(D under, P over)+ P(both over) P(D over) + P(P over) - P(both over)	A1 CAO (2 s.f. min)	
			18

			1
(i)	$\overline{x} = 4.5, \overline{y} = 26.85$ $b = \frac{Sxy}{Sxx} = \frac{983.6 - 36 \times 214.8/8}{204 - 36^2/8} = \frac{17}{42} = 0.405$ OR $b = \frac{983.6/8 - 4.5 \times 26.85}{204/8 - 4.5^2} = \frac{2.125}{5.25} = 0.405$	B1 for \overline{x} and \overline{y} used (SOI) M1 for attempt at gradient (b)	
	hence least squares regression line is: $y - \overline{y} = b(x - \overline{x})$ $\Rightarrow y - 26.85 = 0.405(x - 4.5)$ $\Rightarrow y = 0.405x + 25.03$	A1 for 0.405 cao M1 <i>indep</i> for equation of line A1FT for complete equation	5
(ii)	$x = 4 \Rightarrow$ predicted $y = 0.405 \times 4 + 25.03 = 26.65$ Residual = 27.5 - 26.65 = 0.85	M1 for prediction A1FT for ± 0.85 B1FT for sign (+)	3
(iii)	The new equation would be preferable, since the equation in part (i) is influenced by the unrepresentative point (4,27.5)	B1 E1	2
(iv)	H ₀ : $\rho = 0$; H ₁ : $\rho > 0$ where ρ represents the population correlation coefficient Critical value at 5% level is 0.3783 Since 0.209 < 0.3783, there is not sufficient evidence to reject H ₀ , i.e. there is not sufficient evidence to conclude that there is any correlation between cycling and swimming times.	B1 for H_0 and H_1 B1 for defining ρ B1 for 0.3783 M1 for comparison leading to conclusion A1 <i>dep on cv</i> for conclusion in words	5

		in context	
(v)	Underlying distribution must be bivariate normal.		
		B1	
	The distribution of points on the scatter diagram		
	should be approximately elliptical.		2
		E1	
			17

(a) (i)	H ₀ : $\mu = 166500$; H ₁ : $\mu > 166500$ Where μ denotes the mean selling price in pounds of the population of houses on the large estate	B1 for both correct B1 for definition of μ	2
(ii)	n = 6, Σx = 1018500, \overline{x} = £169750 = 169750 - 166500 3250	B1CAO M1 must include √6	
	Test statistic = $\frac{169750 - 166500}{14200 / \sqrt{6}} = \frac{3250}{5797}$ = 0.5606	A1FT	
	5% level 1 tailed critical value of $z = 1.645$ 0.5606 < 1.645 so not significant. There is insufficient evidence to reject H ₀	B1 for 1.645 M1 for comparison leading to a conclusion	6
	It is reasonable to conclude that houses on this estate are not more expensive than in the rest of the suburbs.	A1 for conclusion in words in context	

~			of drink	Row		
Observed	Alcoholic	Soft drinks	totals			
	Business	54	63	117		
Type of	Tourist	95	41	136		
customer	Local	71	76	147		
Column to	als	220	180	400		
						M1 A1 for expected
E	spected	Type of Alcoholic	of drink Soft drinks	Row totals		values (to 2dp)
т. Т	Business	64.35	52.65	117		
Type of	Tourist	74.80	61.20	136		
customer	Local	80.85	66.15	147		
Column to	als	220	180	400		M1 for valid attempt
				n		at (O-E) ² /E
Chi squar	ed contribution	Type of Alcoholic	of drink Soft drinks	Row totals		
	Business	1.665	2.035	3.699		M1dep for summatio
Туре	Tourist	5.455	6.667	12.122		
of customer	Local	1.200	1.467	2.667		A1CAO for X^2
$X^2 = 18$	49					B1 for 2 deg of f
	• • •					B1 CAO for cv
Refer to \mathcal{X}_2^2					B1 dep on cv	
	value at 5%	level = 5.	991			E1
Result i	s significant					21
		ciation he	tween cust	omer typ	e and	
There is type of o				Jenner Jp	• •••=•	