Vrite your name here Surname	Othe	r names
Pearson Edexcel GCE	Centre Number	Candidate Number
Chemist		
Advanced Subsid Unit 1: The Core P	iary	mistry
Advanced Subsid	iary Principles of Che	mistry Paper Reference 6CH01/01

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

PEARSON

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box ⊠. If you change your mind, put a line through the box ⊠ and then mark your new answer with a cross ⊠.				
1	The co	prrect sequence for the processes that occur in a mass spectrometer is		
	🖾 A	vaporization, ionization, acceleration, deflection and detection.		
	B	vaporization, acceleration, ionization, deflection and detection.		
	🖾 C	ionization, vaporization, acceleration, deflection and detection.		
	🖾 D	ionization, vaporization, deflection, acceleration and detection.		
		(Total for Question = 1 mark)		
2	2 Which of the following ions would be deflected most in a mass spectrometer?			
	🖾 A	³⁵ Cl+		
	B	³⁷ Cl ⁺		
	🛛 C	³⁷ Cl ²⁺		
	🖾 D	(³⁵ Cl — ³⁷ Cl) ⁺		
		(Total for Question 2 = 1 mark)		
3	3 A particle with a single positive charge and with the electronic configuration $1s^2 2s^2 2p^6$ is			
	🖾 A	a sodium ion.		
	B	a fluoride ion.		
	🖾 C	an oxide ion.		
	🖾 D	a potassium ion.		
		(Total for Question 3 = 1 mark)		

4		In which of the following electronic configurations are only two of the electrons unpaired?		
	A 🖾	1s ² 2s ²		
	B	1s ² 2s ² 2p ³		
	🖾 C	1s ² 2s ² 2p ⁴		
	D 🛛	1s ² 2s ² 2p ⁵		
		(Total for Question 4 = 1 mark)		
5	Which	of the following contains a dative covalent bond?		
	A 🖾	N ₂		
	B	NH ₃		
	🛛 C	NH ₂ ⁻		
	D 🛛	NH_4^+		
		(Total for Question 5 = 1 mark)		
6	Which	of the following ions has the largest ionic radius?		
6		of the following ions has the largest ionic radius?		
	⊠ B	Mg ²⁺		
		Na ⁺ O ²⁻		
	⊠ D			
		(Total for Question 6 = 1 mark)		
7		of the following observations provides the best evidence for the presence of bonding in an unknown substance?		
	The su	bstance conducts electricity		
	A 🛛	in the solid state.		
	🖾 B	in the solid state and in aqueous solution.		
	🖾 C	in the solid state and when molten.		
	🛛 D	when molten but not in the solid state.		
		(Total for Question 7 = 1 mark)		

8		of the following can be determined, for an unknown alkene, using only
	percer	ntage composition by mass data? Molecular formula
	B	Empirical (simplest) formula
	🖾 C	Both the molecular formula and the empirical (simplest) formula
	D 🛛	Structural formula
		(Total for Question 8 = 1 mark)
9	-	of iron reacts with oxygen to form 1.60 g of an oxide of iron. lative atomic masses: Fe = 56, O = 16.
	What	is the formula of this oxide of iron?
	🖾 A	FeO ₅
	B	Fe ₂ O ₁₀
	🖾 C	Fe ₃ O ₂
	D 🛛	Fe ₂ O ₃
		(Total for Question 9 = 1 mark)
10		experiment, 1.226 g of potassium chlorate(V), KClO ₃ , was heated. A mass of g of oxygen gas, O ₂ , was collected.
		$2\text{KCIO}_3(s) \rightarrow 2\text{KCI}(s) + 3\text{O}_2(g)$
	Use th	ie molar mass of KClO ₃ = 122.6 g mol ⁻¹ and relative atomic mass O = 16.
	The pe	ercentage yield of oxygen in this experiment is
	Α	17.4%
	B	26.1%
	🖾 C	66.7%
	D	100%
		(Total for Question 10 = 1 mark)

P 4 2 9 7 0 A 0 4 2 4

11 Oxygen gas, O_2 , can be converted into ozone, O_3 , by passing it through an electric discharge.					
	$3O_2(g) \rightarrow 2O_3(g)$				
the	In an experiment, a volume of 300 cm ³ of oxygen was used but only 10% of the oxygen was converted into ozone. All volumes were measured at the same temperature and pressure.				
The	total volume of gas present at the end of the experiment, in cm ³ , was				
×	A 200				
\times	B 210				
\mathbf{X}	C 290				
\mathbf{X}	D 300				
	(Total for Question 11 = 1 mark)				
12 1.4) g of an alkene gave 3.77 g of a dichloroalkane on reaction with chlorine.				
	at is the molecular formula of the alkene?				
	A C_2H_4				
	B C_3H_6				
	$C C_4 H_8$				
	D C_6H_{12}				
	(Total for Question 12 = 1 mark)				
	standard enthalpy change for the combustion of graphite is -393.5 kJ mol ⁻¹ and t of diamond is -395.4 kJ mol ⁻¹ .				
Wh	at is the standard enthalpy change for the reaction below, in kJ mol ⁻¹ ?				
	$C(s, graphite) \rightarrow C(s, diamond)$				
\boxtimes	A -1.9				
\square	B +1.9				
\square	C –788.9				
\square	D +788.9				
	(Total for Question 13 = 1 mark)				

14 The standard enthalpy change of neutralization when an acid reacts with an alkali is the number of kilojoules released by the formation of one mole of salt. B formation of one mole of water. C neutralization of one mole of acid. D neutralization of one mole of alkali. (Total for Question 14 = 1 mark) **15** Consider the following bond enthalpy values. Bond enthalpy / kJ mol⁻¹ Bond 0—0 +146O—H +463 0=0 +496 For the reaction $H - O - H(q) \rightarrow H - O - H(q) + \frac{1}{2}O = O(q)$ the enthalpy change, in kJ mol⁻¹, is **A** −102 B +102 🖂 C +350**D** +394 (Total for Question 15 = 1 mark) Use this space for any rough working. Anything you write in this space will gain no credit.

	$CS_2(g) + 3O_2(g)$	$\rightarrow CO_2(g) + 2SO_2(g)$	
	Substance	Standard enthalpy change of formation, ΔH_{f}^{\ominus} / kJ mol ⁻¹	
	CS ₂ (g)	+110	
	CO ₂ (g)	-390	
	SO ₂ (g)	-290	
■ A –570			
B −790			
C −860			
D −1080			
		(Total for Question 16 = 1	1
$\square \mathbf{C} C_2 H_4 = \mathbf{D} C_2 H_4 = \mathbf{D}$ (b) The mech	ophilic addition. ophilic substitution. ophilic addition.	een ethene and hydrogen bromide is	(1)
🛛 C nucleo			
C nucleo	ophilic substitution.	(Total for Question $17 = 2$	marks)
🛛 C nucleo	ophilic substitution.	(Total for Question 17 = 2	marks)

18 Which of the following pairs are <i>cis-trans</i> isomers?			
$\begin{array}{cccccccc} H & Cl & Cl & Cl & H & Cl & Cl & H \\ H & C = C & Cl & H & Cl & Cl & Cl & H \\ H & C = C & H & Cl & Cl & H \\ 1 & 2 & 3 & 4 \end{array}$			
A 1 and 2			
B 1 and 4			
C 2 and 3			
D 3 and 4			
(Total for Question 18 = 1 mark)			
19 What is the systematic name for the hydrocarbon shown below?			
CH3			
CH ₃ CHCHCH ₃ CH ₃			
A 1,4-dimethylbutane			
B 2,3-dimethylbutane			
 C 2,3-dimethylhexane D 1122 tetramethylethane 			
D 1,1,2,2-tetramethylethane			
(Total for Question 19 = 1 mark)			
TOTAL FOR SECTION A = 20 MARKS			

BLANK PAGE

SECTION B				
Answer ALL the questions. Write your answers in the spaces provided.				
20 Crude oil is composed mainly of alkanes, which are saturated hydrocarbons.				
(a) (i) Define the term hydrocarbon .	(1)			
(ii) State what is meant by the term saturated , as applied to a hydrocarbon.	(1)			
(b) Crude oil can be separated into fractions.				
(i) What property allows crude oil to be separated by fractional distillation?	(1)			
 (ii) Many chemists are of the opinion that we should use fuels such as biodiese rather than petrol and diesel. Suggest one reason to support this opinion. 	:l (1)			
10				

P 4 2 9 7 0 A 0 1 0 2 4

 (c) A molecule of a hydrocarbon, X, can be cracked to form one molecule of pentane, C₅H₁₂, and two molecules of ethene only. (i) Deduce the molecular formula of X. 	(1)
(ii) Give one reason why cracking reactions are carried out in industry and suggest why high temperatures are used in this process other than to speed up the reaction.	(2)
(d) Butane, C₄H ₁₀ , is a hydrocarbon which is used as a fuel. It is a gas under standard conditions. (i) Explain what is meant by the term fuel .	(1)
(ii) Write an equation for the complete combustion of butane under standard conditions. Include state symbols in your answer.	(2)

P 4 2 9 7 0 A 0 1 2 2 4

*(ii) Describe the mechanism of the reaction between butane and bromine that forms the products given in the equation below.

$$C_4H_{10} + Br_2 \rightarrow C_4H_9Br + HBr$$

In your answer you should include

- equations for each step of the mechanism (curly arrows are **not** required)
- the name of each step occurring in the mechanism.

(7)

(Total for Question 20 = 21 marks)

21 Lattice energies can be calculated from experimental data using Born-Haber cycles.

In the table below are the enthalpy changes needed to calculate the lattice energy of sodium oxide, Na_2O .

Letter	Enthalpy change	Value / kJ mol ⁻¹	
А	1st electron affinity of oxygen	-141	
В	2nd electron affinity of oxygen	+790	
С	1st ionization energy of sodium	+496	
D	enthalpy change of atomization of sodium	+108	
E	enthalpy change of atomization of oxygen, $\frac{1}{2}O_2(g)$	+249	
F	enthalpy change of formation of sodium oxide	-414	
G	lattice energy of sodium oxide		

(a) Define the term **lattice energy**.

Justify your answer in terms of the sizes and tl		
	5	(4)
	(Total for Question 21 = 11 ma	rks)

P 4 2 9 7 0 A 0 1 6 2 4

22 Nickel is an element in the d-block of the Periodic Table.

(a) Complete the electronic configuration of a nickel atom using the s, p, d notation.

(1)

- 1s²
 - (b) A sample of nickel is made up of three isotopes. The percentage abundances are shown in the table below.

lsotope	Percentage abundance
⁵⁸ Ni	69.02
⁶⁰ Ni	27.32
⁶² Ni	3.66

Calculate the relative atomic mass of nickel. Give your answer to **two** decimal places.

(c) Nickel reacts with carbon monoxide, CO, to give the compound nickel carbonyl, Ni(CO)₄.

 $Ni(s) + 4CO(g) \rightarrow Ni(CO)_{a}(g)$

(i) Calculate the volume of carbon monoxide, in dm³, measured at room temperature and pressure, that is required to react completely with 5.87 g of nickel.

[Relative atomic mass: Ni = 58.7Molar volume of a gas = 24 dm³ mol⁻¹ at room temperature and pressure.]

(3)

(ii) Calculate the **number** of carbon monoxide molecules present in the volume of gas you have calculated in (c)(i).

[The Avogadro constant, $L = 6.02 \times 10^{23} \text{ mol}^{-1}$]

(1)

(d) Nickel(II) nitrate, Ni(NO₃)₂, can be made by several different methods.

Method 1

Nickel(II) oxide, NiO, was reacted with dilute nitric acid according to the equation

 $NiO(s) + 2HNO_{3}(aq) \rightarrow Ni(NO_{3})_{2}(aq) + H_{2}O(I)$

(i) Calculate the volume of 2.00 mol dm⁻³ dilute nitric acid, in cm³, that was required to exactly neutralize 1.494 g of nickel(II) oxide.

Use the relative atomic masses: Ni = 58.7, O = 16.0

(3)

Method 2

A volume of 25.0 cm³ of 2.00 mol dm⁻³ nitric acid, HNO_3 , was transferred to a beaker. Solid nickel(II) carbonate, $NiCO_3$, was added until it was in excess.

(ii) Why was **excess** nickel(II) carbonate used?

(1)

(iii) Why must the beaker be **much** larger than the volume of acid used?

(1)

(iv) Write a balanced equation for the reaction between nickel(II) carbonate and dilute nitric acid, including state symbols. (2) *(v) For **Method 2**, describe the practical steps that you would take to obtain pure dry crystals of hydrated nickel(II) nitrate, Ni(NO₃)₂.6H₂O, from a mixture of nickel(II) nitrate solution and unreacted solid nickel(II) carbonate. (4) (Total for Question 22 = 18 marks) 20

P 4 2 9 7 0 A 0 2 0 2 4

	ns the Periodic Table.		
	has mass number 40. Complete the tomic particles in this atom of argon		
	Sub-atomic particles present in one atom of ⁴⁰ Ar	Number	(1)
	electrons		
	neutrons		
	sium has mass number 39. Explain v nodern Periodic Table.	vhy argon is pla	ced before (1)
(c) In the context of t periodicity .	he Periodic Table, explain what is m	eant by the terr	n (2)
	he Periodic Table, explain what is m	eant by the terr	
	he Periodic Table, explain what is m	eant by the terr	
	he Periodic Table, explain what is m	eant by the terr	
periodicity.	he Periodic Table, explain what is m		(2)
periodicity.			(2)

P 4 2 9 7 0 A 0 2 2 2 4

sodium.	(3)
	(Total for Question 23 = 10 marks)
	TOTAL FOR SECTION B = 60 MARKS TOTAL FOR PAPER = 80 MARKS

								_																						
	0 (8)	(18)	4.0 H e	2	20.2	Ne	neon 10	39.9	Ar	argon 18	83.8	Кr	krypton 36	131.3	Xe	xenon 5.4	[222]	ä	radon	86		ted								
	7			(17)	19.0	Ŀ	fluorine 9	35.5	บ	chlorine 17	79.9	Br	bromine 35	126.9	_	iodine 53	[210]	44	astatine	85		Elements with atomic numbers 112-116 have been reported but not fully authenticated		175	Lu	lutetium 71	[257]	L	103	
	6			(16)	16.0	0	oxygen 8	32.1	S	sulfur 16	79.0	Se	selenium 34	127.6	Te	tellurium 57	12091	ď	polonium	84		116 have b iticated		173	Υb	ytterbium 70	[254]	No	102	
	2			(13) (14) (15)	14.0	z	nitrogen 7	31.0	• ۲	phosphorus 15	74.9	As	arsenic 33	121.8	Sb	antimony 51	209.0	ia	bismuth	83		tomic numbers 112-116 hav but not fully authenticated		169	Tm	thulium 69	[256]	ΡW	101	
	4				12.0	υ	carbon 6	28.1	Si	silicon 14	72.6	Ge	germanium 32	118.7	Sn	tin 50	207.2	ł	lead	82		atomic nui but not f		167	Er	erbium 68	[253]	Fm	100	
	с				10.8	8	boron 5	27.0	AI	aluminium 13	69.7	Ga	gallium 31	114.8	Ľ	indium AO	204.4	F	thallium	81		lents with		165		holmium 67	[254]	Es	66	
EIILS										(12)	65.4	Zn	zinc 30	112.4	pC	cadmium 48	200.6	РЧ	mercury	80				163	Dy	dysprosium 66	[251]	Cf	98 99 99	
LIPID									(11)	63.5	Cu	copper 29	107.9	Ag	silver 47	197.0	VII V	gold	79	[272]	roe	111	159	Tb	terbium 65	[245]	BK brotolium	97		
										(10)	58.7	Ņ	nickel 28	106.4	Рd	palladium 46	195.1	ā	platinum	78	_	DS damstadtium	110	157		gadolinium 64	[247]	C	96	
r Iau				~						(6)	58.9	ပိ	cobalt 27	102.9		rhodium 45	192.2	<u>-</u>	iridium	77	[268]	E	401	152		europium 63	[243]	Am		
			1.0 H hydrogen							(8)	55.8	Fe		101.1		ruthenium 44	190.2	č	osmium	76	[277]	Hs hassium	108	150		62	[242]	Np Pu	94	
										(2)	54.9	Mn	manganese 25	[98]	Ч	molybdenum technetium	186.2	B A	rhenium	75	_	ğ	10/	[147]	Pm	promethium 61	[237]	Np	93	
				Key	relative atomic mass	bol	number			(9)	52.0	ں ک	chromium 24	95.9	Wo	molybdenum	183.8	3	tungsten	74	[266]	Sg seaborgium	106	144	PN	praseodymium neodymium promethium 59 60 61	238		92	
						atomic symbol	name c (proton) I	atomic (proton) number		(5)	50.9	>	vanadium 23	92.9		niobium 41	180.9	Ĕ	tantalum	73	[262]	qı	CUL	141	Pr	praseodymium 59	[231]	Pa	91	
					relat	ato	atomic			(4)	47.9	ï	titanium 22	91.2	Zr	zirconium	178.5	Η	Å	_	[261]	Rf rutherfordium	104	140	e C	cerium 58	232	Th Th	60	
					_				(3)			Sc	scandium 21	88.9		yttrium 30	138.9	*	La lanthanum	57	[227]	AC* actinium	89	ies						
	2			(2)	0.6	Be	beryllium 4	24.3	Mg	magnesium 12	40.1	Ca	calcium 20	87.6	Sr	strontium 3.8	137.3	Ra	barium	56	[226]	Ra radium	^{SS}		* Lanthanide series	* Actinide series				
	-			(1)	6.9	::	lithium 3	23.0	Na	sodium 11	39.1	¥	potassium 19	85.5	Вb	rubidium 37	132.9	۲	caesium	55	[223]	Fr francium	8/							

The Periodic Table of Elements

