International GCSE in Mathematics B - Paper 2 mark scheme

Question	Working	Answer	Mark	AO	Sub-total	Total
1	$\begin{aligned} & \frac{65}{100} \times 80 \times 100(=£ 5200) \\ & \quad+\frac{55}{100} \times 80 \times 50(=£ 2200) \\ & \frac{45}{100} \times 80 \times(280-' 150 ')(=£ 4680) \\ & \text { '£5200' + '£2200' + '£4680' } \\ & £ 12080.00 \end{aligned}$	£12080.00	M1 M1 DEP M1 DEP A1	1.1		4
2(a)	$(2 x-5 y)(2 x+5 y)$ (at least one correct)		M1	1.3		
		$(2 x-5 y)(2 x+5 y)$	A1		2	
2(b)	$\underline{x^{2}-11 x+24} \times \underline{2 x^{2}+7 x-15}$		M1	1.3		
	$x+5 \quad x-3$ Attempt at factorising a quadratic NB: For method, the two bracketed terms, when multiplied out, must give at least two of the three terms from the trinomial		M1			
	quadratic equation	$\begin{gathered} (x-8)(x-3) \\ (2 x-3)(x+5) \end{gathered}$	A1 A1			
		$(x-8)(2 x-3)$	A1		5	7

Question	Working	Answer	Mark	AO	Sub-total	Total
3(a)		10, 45 and 8	B1	1.2		
		$25-x, 13-x$	B1	1.2	2	
3(b)		c's six terms $=90$	B1 ft	1.2	1	
3(c)		11 (cao and correctly obtained)	B1	1.3	1	
3(d)(i)		35 (cao)	B1	1.2		
3(d)(ii)	66-'11' or $90-\mathbf{3 5}$ '	55	B1 ft	1.2	2	6
4(a)						
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-1-4 x=0(1$ term correct in a linear \exp in $x)$		M1	1.4		
	Substitute ' x ' in y.	$\therefore x=-\frac{1}{4}$	A1			
			M1			
		$\therefore y=6 \frac{1}{8}$	A1		4	
4(b)(i)		$\frac{\mathrm{d} y}{\mathrm{~d} x}(x=-1)=+3,$	B1			
		$\frac{\mathrm{d} y}{\mathrm{~d} x}(x=0)=-1$				

Question	Working	Answer	Mark	AO	Sub-total	Total
6(a)		each correct section of journey	$\begin{gathered} \mathrm{B} 1, \mathrm{~B} 1 \mathrm{ft}, \\ \text { B1 ft } \end{gathered}$	1.4	3	
	N.B. Second $\mathbf{B 1} \mathbf{f t}$ is for a correct horizontal line, of correct length, drawn from the end of the first line segment. Third B1 ft is for their line, starting where their horizontal line finishes and terminates at Northampton at $11: 45$					
	$11: 45$ - '10:09' (96 minutes) NB: For method, the mark is awarded from 11:45 minus the start time from Bradford	$70 \mathrm{~km} / \mathrm{h}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		2	
6(c)		one straight line, correct starting point	B1			
	NB: For $\mathbf{f t}$, must finish at Manchester, 2 hours after leaving Northampton.	correct finishing point	B1 ft		2	
$\begin{aligned} & \text { 6(d)(i) } \\ & \text { 6(d)(ii) } \end{aligned}$		$\begin{aligned} & 10.33(\pm 2 \mathrm{~min}) \\ & 28 \mathrm{~km}(\pm 1 \mathrm{~km}) \end{aligned}$	B1 ft B1 ft		2	9

Question	Working	Answer	Mark	AO	Sub-total	Total
9(a)		$1-p$	B1	3.10	1	
9(b)		for each correct pair	$\begin{gathered} \mathrm{B} 1 \mathrm{ft}, \mathrm{~B} 1, \\ \mathrm{~B} 1 \end{gathered}$		3	
9(c)	$\begin{aligned} & \mathrm{P}(\text { pass })=5 \times(1-\mathrm{P}(\text { pass })) \\ & \mathrm{P}(\text { pass })=\frac{5}{6} \\ & \text { awrt } 0.838 \end{aligned}$		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$			
	$\begin{aligned} & \mathrm{P}(\text { pass })='^{\prime} \frac{5}{6} '=\text { one of } p \times \times^{\prime} 0.8^{\prime} \text { or }(1-p) \times{ }^{\prime} 0.9^{\prime} \\ & \mathrm{P}(\text { pass })={ }^{\prime} \frac{5}{6} '=p \times{ }^{\prime} 0.8^{\prime}+(1-p) \times{ }^{\prime} 0.9^{\prime} \end{aligned}$		M1 M1 DEP			
		$p=\frac{2}{3}, 0.667$	A1		5	
9(d)	any probability \div (${ }^{5} 5 / 6$ ')		M1 M1 DEP			
	$\frac{\left(12 / 3 ' \times^{\prime} 0.8^{\prime}\right)}{(.5 / 1)}$					
	(1/6)	$\frac{48}{75}(\mathrm{oe}), 0.64$	A1		3	12

Question	Working	Answer	Mark	AO	Sub-total	Total
10(a)	Penalise labelling ONCE only Triangle A	triangle A drawn	B1	1.4	1	
10(b)		$y=-1$ drawn	B1	1.4	1	
10(c)		triangle B drawn	B1	2.8	1	
10(d)	At least two construction lines through $(0,-2)$		M1	2.8		
		triangle C drawn	$\begin{gathered} \mathrm{A} 2 \mathrm{ft} \\ (-1 \mathrm{ee}) \end{gathered}$	1.5	3	
10(e)	$\left(\begin{array}{rr} -1 & 0 \\ 0 & 1 \end{array}\right) "\left(\begin{array}{lll} -1 & -2 & -3 \\ 1 & -1 & -1 \end{array}\right) "$		M1	1.5		
		$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & -1 & -1 \end{array}\right)$	A1 ft			
		triangle D drawn	A1		3	
10(f)		reflection $x=0$ or y-axis	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	1.5	2	
10(g)	More than one transformation scores B0, B0, B0	enlargement scale factor 2 centre ($0,-4$)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \hline \end{aligned}$	2.8	3	14

Question	Working	Answer	Mark	AO	Sub-total	Total
11(a)(i)		$\mathbf{a}+2 \mathrm{~b}$	B1	2.8		
11(a)(ii)	$\overrightarrow{C B}=-\left({ }^{\prime} \mathbf{a}+2 \mathbf{b}^{\prime}\right)+4 \mathbf{b}$		M1	2.8		
	$\overrightarrow{C G}=\frac{3}{5}(2 \mathbf{b}-\mathbf{a}),$		M1	2.8		
		$\frac{3}{5}(2 \mathbf{b}-\mathbf{a})$	A1	2.8	4	
11(b)(i)	$\overrightarrow{F G}=\frac{3}{5}(\mathbf{a}+2 \mathbf{b})^{\prime}+{ }^{\prime} \frac{3}{5}(2 \mathbf{b}-\mathbf{a})^{\prime}$		M1	2.8		
		$\overrightarrow{F G}=\frac{12}{5} \mathbf{b}$	A1	1.3		
11(b)(ii)		$\lambda=\frac{12}{5}$	B1 ft	2.8	3	
11(c)(i)	From given ratios and (b), $\Delta s \begin{aligned} & F C G \\ & O C B\end{aligned}$ are similar $\because \frac{F C}{O C}=\frac{C G}{C B} \quad \frac{F G}{O B} \quad \frac{3}{5}$ or give reasons for AAA or give reasons for SAS		M1	2.6		
		(cc)	A1	2.6		
11(c)(ii)	$\begin{aligned} & \begin{aligned} & F C G \\ & \text { As } \quad \\ & \\ & \therefore \mid \Delta C B \end{aligned} \text { are similar, } \\ & \|\triangle O C B\|:\|\Delta F C G\|=5^{2}: 3^{2} \end{aligned}$		M1	2.6		

