GCE

Chemistry A

H432/01: Periodic table, elements and physical chemistry

A Level

Mark Scheme for June 2022

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

MARKING INSTRUCTIONS

PREPARATION FOR MARKING

RM ASSESSOR

1. Make sure that you have accessed and completed the relevant training packages for on-screen marking: RM Assessor Online Training; OCR Essential Guide to Marking.
2. Make sure that you have read and understood the mark scheme and the question paper for this unit.
3. Log-in to RM Assessor and mark the required number of practice responses ("scripts") and the required number of standardisation responses.

MARKING

1. Mark strictly to the mark scheme.
2. Marks awarded must relate directly to the marking criteria.
3. The schedule of dates is very important. It is essential that you meet the RM Assessor 50\% and 100\% (traditional 50\% Batch 1 and 100\% Batch 2) deadlines. If you experience problems, you must contact your Team Leader (Supervisor) without delay.
4. If you are in any doubt about applying the mark scheme, consult your Team Leader by telephone, email or via the RM Assessor messaging system.
5. Work crossed out:

Crossed Out Responses

Where a candidate has crossed out a response and provided a clear alternative then the crossed out response is not marked. Where no alternative response has been provided, examiners may give candidates the benefit of the doubt and mark the crossed out response where legible.

Rubric Error Responses - Optional Questions

Where candidates have a choice of question across a whole paper or a whole section and have provided more answers than required, then all responses are marked and the highest mark allowable within the rubric is given. Enter a mark for each question answered into RM assessor, which will select the highest mark from those awarded. (The underlying assumption is that the candidate has penalised themselves by attempting more questions than necessary in the time allowed.)

Multiple Choice Question Responses

When a multiple choice question has only a single, correct response and a candidate provides two responses (even if one of these responses is correct), then no mark should be awarded (as it is not possible to determine which was the first response selected by the candidate).
When a question requires candidates to select more than one option/multiple options, then local marking arrangements need to ensure consistency of approach.

Contradictory Responses

When a candidate provides contradictory responses, then no mark should be awarded, even if one of the answers is correct.
Short Answer Questions (requiring only a list by way of a response, usually worth only one mark per response)
Where candidates are required to provide a set number of short answer responses then only the set number of responses should be marked. The response space should be marked from left to right on each line and then line by line until the required number of responses have been considered. The remaining responses should not then be marked. Examiners will have to apply judgement as to whether a 'second response' on a line is a development of the 'first response', rather than a separate, discrete response. (The underlying assumption is that the candidate is attempting to hedge their bets and therefore getting undue benefit rather than engaging with the question and giving the most relevant/correct responses.)

Short Answer Questions (requiring a more developed response, worth two or more marks)
If the candidates are required to provide a description of, say, three items or factors and four items or factors are provided, then mark on a similar basis - that is downwards (as it is unlikely in this situation that a candidate will provide more than one response in each section of the response space.)

Longer Answer Questions (requiring a developed response)

Where candidates have provided two (or more) responses to a medium or high tariff question which only required a single (developed) response and not crossed out the first response, then only the first response should be marked. Examiners will need to apply professional judgement as to whether the second (or a subsequent) response is a 'new start' or simply a poorly expressed continuation of the first response.
6. Always check the pages (and additional objects if present) at the end of the response in case any answers have been continued there. If the candidate has continued an answer there then add a tick to confirm that the work has been seen.
7. Award No Response (NR) if:

- there is nothing written in the answer space.

Award Zero '0' if:

- anything is written in the answer space and is not worthy of credit (this includes text and symbols)

Team Leaders must confirm the correct use of the NR button with their markers before live marking commences and should check this when reviewing scripts.
8. The RM Assessor comments box is used by your Team Leader to explain the marking of the practice responses. Please refer to these comments when checking your practice responses. Do not use the comments box for any other reason.

If you have any questions or comments for your Team Leader, use the phone, the RM Assessor messaging system, or email.
9. Assistant Examiners will send a brief report on the performance of candidates to their Team Leader (Supervisor) via email by the end of the marking period. The report should contain notes on particular strengths displayed as well as common errors or weaknesses. Constructive criticism of the question paper/mark scheme is also appreciated.
10. For answers marked by levels of response:

Read through the whole answer from start to finish, using the Level descriptors to help you decide whether it is a strong or weak answer. The indicative scientific content in the Guidance column indicates the expected parameters for candidates' answers, but be prepared to recognise and credit unexpected approaches where they show relevance. Using a 'best-fit' approach based on the skills and science content evidenced within the answer, first decide which set of level descriptors, Level 1, Level 2 or Level 3, best describes the overall quality of the answer.
Once the level is located, award the higher or lower mark:
The higher mark should be awarded where the level descriptor has been evidenced and all aspects of the communication statement (in italics) have been met.

The lower mark should be awarded where the level descriptor has been evidenced but aspects of the communication statement (in italics) are missing.

In summary:
The skills and science content determines the level.
The communication statement determines the mark within a level.
Level of response questions on this paper are 20(a) and Q22(c)
The only annotation on a level of response question should be the indication of the level.
A level annotation should be used where all marks for a level have been achieved.
e.g. if a candidate has 6 marks, they would have this annotation on their script:

If a candidate has achieved 5 marks then they have reached Level 3 but will not have met the communication statement. They should have the following annotations on their scripts:
\qquad
The same principle should be applied to Level 2 and Level 1.
No marks (0) should have a cross:
Place the annotations alongside the mark for the question.
On additional pages, annotate using SEE
11. Annotations available in RM Assessor

Annotation	Meaning
A	Correct response
A	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given
BP	Ignore

12. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
$($)	Words which are not essential to gain credit
ECF	Alror carried forward
AW	Or reverse argument
ORA	

13. Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix $\mathbf{5}$ Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

SECTION A

Question	Answer	Marks	AO element	Guidance
1	D	1	2.7	
2	C	1	1.2	
3	B	1	2.2	
4	C	1	2.8	
5	B	1	2.2	
6	B	1	1.2	
7	A	1	2.2	
8	A	1	1.2	
9	A	1	1.1	
10	A	1	2.1	
11	D	1	2.3	
12	C	1	1.2	
13	Award the mark regardless of response.	1	2.2	
14	A	1	1.2	
15	B	1	1.2	

SECTION B

Question			Answer	Marks	AO element	Guidance
16	(a)	(i)	 Axes labelled (number of) molecules AND (kinetic) energy AND correct drawing of a Boltzmann distribution i.e. curve must start within the first small square nearest to the origin AND must not touch the x-axis at high energy Drawing of correct Boltzmann distributions at two different temperatures with one termperature identified. (At higher temperature) more molecules/particles have energy above activation energy \checkmark	3	$\begin{gathered} \text { AO1.1 } \\ \times 3 \end{gathered}$	ALLOW particles on the y-axis DO NOT ALLOW atoms on y-axis DO NOT ALLOW enthalpy on x-axis DO NOT ALLOW an increase of more than one small square at the high energy end of the curve i.e. allow a small inflection ALLOW T2 as 'higher termperature' Maximum of curve for higher temperature must be to the right AND lower than the maximum of the curve for lower temperature Lines can only cross once ALLOW ORA if states the effect when the temperature is lower ALLOW has enough energy to react ALLOW E_{a} shown on graph AND greater area under the curve to the right of E_{a} DO NOT ALLOW lowers E_{a} DO NOT ALLOW atoms for molecules IGNORE (more) successful collisions

Quest	Answer	Marks	AO element	Guidance
				Common errors 4 marks (including units) $4.65 \times 10^{9} \mathrm{~mol}^{-3} \mathrm{dm}^{9} \mathrm{~s}^{-1}$ (use of $2^{\text {nd }}$ order with respect to CO) $2446 \mathrm{~mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$ (use of zero order wrt CO)
(b)	$2 \mathrm{NO}_{2}$ only on LHS of step 1 Rest of mechanism	2	$\begin{gathered} \text { AO3.1 } \\ \times 2 \end{gathered}$	M2 dependent on M1 Examples: Step 1: Step 2 : $\begin{aligned} & 2 \mathrm{NO}_{2} \rightarrow \mathrm{NO}+\mathrm{NO}_{3} \\ & \mathrm{NO}_{3}+\mathrm{CO} \rightarrow \mathrm{NO}_{2}+\mathrm{CO}_{2} \end{aligned}$ OR Step 1: $\quad 2 \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$ Step 2 : $\mathrm{N}_{2} \mathrm{O}_{4}+\mathrm{CO} \rightarrow \mathrm{NO}+\mathrm{NO}_{2}+\mathrm{CO}_{2}$ OR Step 1: $\quad 2 \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2}+2 \mathrm{O}_{2}$ Step 2: $\quad \mathrm{N}_{2}+2 \mathrm{O}_{2}+\mathrm{CO} \rightarrow \mathrm{NO}+\mathrm{NO}_{2}+\mathrm{CO}_{2}$ OR Step 1: $\quad 2 \mathrm{NO}_{2} \rightarrow 2 \mathrm{NO}+\mathrm{O}_{2}$ Step 2: $\quad \mathrm{NO}+\mathrm{O}_{2}+\mathrm{CO} \rightarrow \mathrm{NO}_{2}+\mathrm{CO}_{2}$
	Total	10		

(a)	(ii)	Maximum temperature is the same AND Half the energy/ moles AND half the mass/volume	1	A03.4	ALLOW response that links the same proportionality/ratio of volume/mass and energy/moles ALLOW if seen by a calculation
(b)	(i)	(Enthalpy change) when 1 mole of a compound is formed from its elements	1	$\begin{gathered} \text { AO1.1 } \\ \times 1 \end{gathered}$	ALLOW energy required OR energy released ALLOW one mole of product/substance DO NOT ALLOW 1 mole of element DO NOT ALLOW is formed from its gaseous elements when 1 mole of a solid compound when 1 mole of a gaseous compound
	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE If answer = (+)90 award 2 marks \qquad $\begin{aligned} 4\left(\Delta_{i} H^{\circ} . \mathrm{NO}\right) \quad & =-1172-6(-286)+4(-46) \\ & =-1172+1716-184 \\ & =(+) 360\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark \\ & \\ \Delta_{\mathrm{f}} H^{\circ} . \mathrm{NO} \quad & =\frac{360}{4}=(+) 90\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark \end{aligned}$	2	$\begin{gathered} \text { AO2.2 } \\ \times 2 \end{gathered}$	ALLOW ECF providing all values are used ALLOW one transcription error in the values used for M2 Common error 1 mark -90 (wrong sign)

					Common errors 2 marks $-2664.9\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ (Use of $25^{\circ} \mathrm{C}$) $81960\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ (Use of ΔS 284) $4428\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ (Use of $25^{\circ} \mathrm{C}$ and ΔS 284) $-2756.632\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ (Use of $\Delta \mathrm{S}=-0.284)$
	(iii)	ΔS is positive/ + AND ΔH is negative/ $-\checkmark$ ΔG is negative (- at all temperatures) OR ΔG is (always) negative/ - \checkmark	2	$\begin{gathered} \mathrm{AO} 3.1 \\ \mathrm{AO} 3.2 \end{gathered}$	ALLOW $\Delta \mathrm{H}$ is exothermic ALLOW '-T ΔS^{\prime} ' is negative' ΔG comment is dependent on on the signs assigned to ΔS AND ΔH (either in answer or from 17 cii). ALLOW ECF from incorrect signs for $\Delta \mathrm{S}$ and/or $\Delta \mathrm{H}$ from c(ii) i.e. ΔS is positive/ + AND ΔH is positive/ + Reaction is feasible only at high temperatures ΔS is negative/ - AND ΔH is negative/ - Reaction is feasible only at low temperatures IGNORE ΔS is negative/ - AND ΔH is positive/ + (- $\Delta \mathrm{G}$ given in 17 cii) Alternative Approach ALLOW use of $\Delta \mathrm{G}=0$ for 2 marks i.e. calculates $T=-9109 \mathrm{~K} \checkmark$ It is always feasible above $-9109 \mathrm{~K} /$ calculated -ve value and all temperatures are above this \checkmark
		Total	14		

(d)	Sub-shells Be electron is in (2)s AND B electron is in (2) $p \checkmark$ Energy levels $B /(2) p$ is higher energy (level) OR Be / (2)s is lower energy (level) \checkmark	2	$\begin{gathered} \text { AO1. } 2 \\ \times 2 \end{gathered}$	IGNORE number before s and p DO NOT ALLOW "shell" IGNORE block DO NOT ALLOW unpaired electron removed more easily (ORA) IGNORE 'less energy to remove' IGNORE comments about distance from nucleus IGNORE 2s shielding
	Total	9		

Question			Answer	Marks	AO element	Guidance
19	(a)	(i)	Titres Mean titre $\frac{22.45+22.55}{2}=22.5(0)\left(\mathrm{cm}^{3}\right)$	2	$\begin{gathered} \mathrm{AO} 1.2 \\ \times 2 \end{gathered}$	2 DP essential i.e. last 0 for 22.70 DO NOT ALLOW use of trial titre.
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=498 \mathrm{mg}$ award 5 marks Number of moles of KOH in titre $=0.0600 \times \frac{22.50}{1000} \quad \text { OR } 1.35 \times 10^{-3}(\mathrm{~mol}) \checkmark$ Number of moles of acid in $10 \mathbf{c m}^{3}$ $=\frac{1.35 \times 10^{-3}}{2} \quad \text { OR } 6.75 \times 10^{-4}(\mathrm{~mol})$ Number of moles of acid in $250 \mathbf{c m}^{3}$ $=6.75 \times 10^{-4} \times 25 \quad \text { OR } 0.016875(\mathrm{~mol})$ Mass of acid in 4 tablets $=0.016875 \times 118 \quad \text { OR } 1.99125(\mathrm{~g}) \checkmark$ Mass in one tablet AND mg conversion (i.e. divide by 4 AND x 1000) $\begin{aligned} & =\frac{1.99 \times 10^{3}}{4}=498(\mathrm{mg}) \checkmark \\ & \text { Answer must be to } 3 \mathrm{SF} \end{aligned}$	5	AO2.8 $\times 3$ A03.1 A03.2	ALLOW ECF from incorrect titre in 19 (a) (i) ALLOW ECF throughout TAKE CARE: values shown may be truncated calculator values. Steps can be calculated in any order which will change the intermediate answers. Marks are for the processing of the data. ALLOW 3SF up to calculated value throughout BUT ignore trailing zeros on intermediate values IGNORE rounding errors past 3SF

Question		Answer	Marks	AO element	Guidance
(b)	(i)	(Glycolic) acid is in excess/partially neutralised AND glycolate/potassium glycolate (ions) are present/produced \checkmark	1	A01.1	ALLOW some acid remains ALLOW conjugate base for glycolate ions/salt of weak acid ALLOW HOCH ${ }_{2} \mathrm{COO}^{-}$
	(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 3.93 award 4 marks Initial amounts $\begin{array}{ll} n\left(\mathrm{HOCH}_{2} \mathrm{COOH}\right)=0.750 \times \frac{60.0}{1000} & \text { OR 0.045(0) (mol) } \\ \text { AND } n(\mathrm{KOH})=0.625 \times \frac{40.0}{1000} & \text { OR } 0.025(0) \checkmark \end{array}$ Amounts in the buffer solution $n\left(\mathrm{HOCH}_{2} \mathrm{COOH}\right)=0.0450-0.0250 \text { OR 0.02(00) }(\mathrm{mol})$ AND $n\left(\mathrm{HOCH}_{2} \mathrm{COO}^{-}\right) \quad 0.025(0)(\mathrm{mol})$ pH $K_{a}=10^{-3.83} \text { OR } 1.479 \ldots \times 10^{-4} \checkmark$ $\left[\mathrm{H}^{+}\right]=\frac{1.479 \ldots \times 10^{-4} \times 0.200}{0.250}$ OR $1.183 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ $\mathrm{pH}=3.93(\mathbf{2} \mathbf{D P}) \checkmark$	4	A01.2 $\times 1$ AO2.8 $\times 3$	ALLOW ECF throughout ALLOW use of moles for concentration $\left[\mathrm{H}^{+}\right]=\frac{1.479 \ldots \times 10^{-4} \times 0.0200}{0.0250}$ Common errors 3 marks $\mathrm{pH}=3.57$ not using $\mathrm{n}(\mathrm{HA})$ remaining 2 marks $\mathrm{pH}=3.75$ using HA and KOH concentrations within question

| Question | | Answer | Marks | AO
 element | Guidance |
| :--- | :---: | :--- | :--- | :---: | :---: | :---: |

Question			Answer	Marks	AO element	Guidance
20	(a)		Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Uses correct method to calculate K_{c} AND explains why most operational condition is different with few omissions in the explanation. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Uses correct method to calculate K_{c} with few errors OR Derives a correct expression for K_{c} with an attempt at the K_{c} calculation AND explains why an operational condition is different with some omissions. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Derives a correct expression for K_{c} AND explains why one operational condition is different with some omissions. OR explains why most operational conditions are different There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.	6	$\begin{gathered} \text { AO2.4 } \\ \times 4 \\ \text { AO1.2 } \\ \times 2 \end{gathered}$	Indicative scientific points may include: IGNORE trailing zeroes Equilibrium amounts $n\left(\mathrm{~N}_{2}\right): 1.20-0.08=1.12, n\left(\mathrm{H}_{2}\right): 3.60-0.24=3.36$ Equilibrium concentrations $\begin{aligned} & {\left[\mathrm{N}_{2}\right]=\frac{1.12}{8.00}=0.140\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)} \\ & {\left[\mathrm{H}_{2}\right]=\frac{3.36}{8.00}=0.420\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)} \\ & {\left[\mathrm{NH}_{3}\right]=\frac{0.160}{8.00}=0.0200\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)} \end{aligned}$ Equilibrium expression and K_{c} value wih units $\begin{aligned} & K_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right] \times\left[\mathrm{H}_{2}\right]^{3}} \\ & K_{\mathrm{c}}=\frac{0.0200^{2}}{0.140 \times 0.420^{3}}=0.0386 \end{aligned}$ Calculator: 0.03856417851 Units: $\mathrm{dm}^{6} \mathrm{~mol}^{-2}$ Explanation for operational differences. Temperature - Low temperature for maximum yield: $(\Delta H$-ve \backslash exothermic) - High temperature to increase rate Pressure - High pressure for maximum yield (fewer (gaseous) moles/molecules of products) - High pressure expensive to generate OR high pressure is a safety hazard

Question		Answer	Marks	AO element	Guidance
		0 marks No response or no response worthy of credit.			Catalyst - Allows a lower temperature to be used for maximum yield. - Reducing fuel expense OR increasing rate
(b)	(i)	Equilibrium (position) shifts to the left (as T is decreased) AND (forward) reaction is endothermic \checkmark	1	A01.2	ALLOW 'favours backward reaction' Implies shift to left ALLOW 'shifts in exothermic direction' BUT only if (forward) reaction stated as endothermic
	(ii)	Student 2 is correct AND same number of gas particles/ gas(eous) molecules/moles of gas on each side (of equation) \checkmark	1	AO3.2	ALLOW AW that suggests student 2 is correct
		Total	8		

Question			Answer Ca fizzes faster AND Ca dissolves/disappears more quickly \checkmark	Marks 1	AO element	Guidance
21	(a)	(i)				CARE Both needed for 1 mark. ORA ALLOW AW IGNORE finishes first IGNORE more bubbles (need idea of rate) IGNORE exothermic
21		(ii)	Oxidation $\mathrm{Mg} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{e}^{-} \checkmark$ Reduction $2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$ $\mathrm{OR} \mathrm{H}^{+}+\mathrm{e}^{-} \rightarrow 1 / 2 \mathrm{H}_{2} \checkmark$	2	$\begin{gathered} \text { AO2. } 6 \\ \times 2 \end{gathered}$	In half equations, ALLOW the use of efor e^{-} ALLOW Mg - $2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}^{2+}$ IGNORE state symbols even is wrong BUT half equations MUST only have species that change. For charges on half equations, ALLOW Mg^{+2} for Mg^{2+} OR H^{+1} for H^{+} If BOTH half equations are correct but shown with oxidation and reduction the wrong way around, award 1 mark from the 2 marks for half equations

(b)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=2.53(\mathrm{~g})$ award 5 marks	5	$\begin{gathered} \mathrm{AO} 2.4 \\ \times 5 \end{gathered}$	ALLOW ECF and 3SF throughout. ALLOW calculation process in any order.
		$\begin{aligned} & {\left[\mathrm{H}^{+}\right]=10^{-13.12} \text { OR } 7.58 \ldots \ldots . \times 10^{-14}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark} \\ & {\left[\mathrm{OH}^{-}\right]=\frac{1 \times 10^{-14}}{7.58 \ldots \ldots . . \times 10^{-14}} \text { OR } 0.1318 \ldots \ldots\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark} \end{aligned}$			Calculator: $7.58577575 \times 10^{-14}$
					Calculator: 0.1318256739
					ALLOW alternative approach using pOH for first 2 marks. $\begin{aligned} & \mathrm{p}\left[\mathrm{OH}^{-}\right]=14-13.12=0.88 \\ & {\left[\mathrm{OH}^{-}\right]=10^{-0.88}=0.1318 \ldots \ldots} \end{aligned}$
		$\begin{aligned} & n\left(\mathrm{OH}^{-}\right) \text {in } 250 \mathrm{~cm}^{3}=\frac{0.1318 \ldots . .}{4} \text { OR } 0.0329 \ldots \ldots(\mathrm{~mol}) \\ & n\left(\mathrm{Ba}(\mathrm{OH})_{2}\right) \text { or } \mathrm{n}(\mathrm{BaO})=\frac{0.0329 \ldots \ldots}{2} \text { OR } 0.0164 \ldots .(\mathrm{mol}) \end{aligned}$			Calculator: 0.03295641846 $0.033(0)$ comes from $\left[\mathrm{OH}^{-}\right]=0.132$ Calculator: 0.01647820923
		Mass of $\mathbf{B a O}=0.0164 \ldots \ldots \times 153.3=2.53(\mathrm{~g}) 3$ SF \checkmark			Calculator: 2.526109475 Common errors 4 marks $5.05 \mathrm{~g} \quad$ Not dividing by 2 2.82 g Use of Mr_{r} for $\mathrm{Ba}(\mathrm{OH})_{2}$ 5.06 g rounds to 0.132 in M2 then not dividing by 2 3 marks 5.65 g not dividing by 2 and using Mr for $\mathrm{Ba}(\mathrm{OH})_{2}$

| (ii) | $\mathrm{Mg}_{3} \mathrm{Ca}\left(\mathrm{CO}_{3}\right)_{4}(\mathrm{~s})+8 \mathrm{HCl}(\mathrm{aq}) \rightarrow$
 $3 \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{CaCl}_{2}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+4 \mathrm{CO}_{2}(\mathrm{~g})$
 Correct formulae \checkmark
 Balanced AND state symbols \checkmark | $\mathbf{2}$ | $\mathbf{A O 2 . 6}$
 $\times 2$ | ALLOW multiples | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | TOTAL | | | M2 dependent on M1 |
| IGNORE incorrect state symbol for $\mathrm{Mg}_{3} \mathrm{Ca}\left(\mathrm{CO}_{3}\right)_{4}$ | | | | | |

Question		Answer	Marks	AO element	Guidance	
$\mathbf{2 2}$	(a)	(i)	(N) donates two electron pairs (to a metal ion/metal/Fe ${ }^{3+}$)) AND forms two coordinate / dative (covalent) bonds \checkmark	$\mathbf{1}$	AO1.2	ALLOW lone pairs for electron pairs TWO is only needed once if bonds are plural e.g. donates 2 electron pairs to form co- ordinate bonds OR donates electron pairs to form 2 coordinate bonds.

Question		Answer	Marks	AO element	Guidance
		For $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$, ALLOW skeletal, structural, displayed formula AND C-C without Hs and IF NH_{2} shown with incorrect number of H , eg. N N , penalise first time ONLY IF ALL 3 isomers are 'correct', but $\mathbf{2} \mathbf{x ~ C I ~ A N D ~ n o ~ N s , ~ e . g . ~}$ AWARD 1 mark			Each structure to contain 2 'out wedges', 2 'in wedges' and 2 lines in plane of paper OR 4 lines, 1 'out wedge' and 1 'in wedge': Bond into paper can be shown as: $\prime \prime \prime \prime \prime \prime \prime \prime \prime \prime, ~ \ddots, ~ \prime \prime, .$ ALLOW
(b)	(i)	$\mathrm{Fe}^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Fe}(\mathrm{OH})_{2} \checkmark$	1	A02.6	IGNORE state symbols, even if wrong ALLOW $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}+2 \mathrm{H}_{2} \mathrm{O}$ OR $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}+6 \mathrm{H}_{2} \mathrm{O}$

Question	Answer	Marks	AO element	Guidance
	Level 1 (1-2 marks) Reaches a simple conclusion to determine the correct formulae of some of B, C, D, E, F and G OR The correct formulae for 1 of B, C, D, E, F and G with correct equation or calculation. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.			Experiment 3 Equation $\begin{aligned} & \mathrm{CuO}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O} \\ & 2 \mathrm{Cu}^{2+}+4 \mathrm{I}^{-} \rightarrow 2 \mathrm{CuI}+\mathrm{I}_{2} \end{aligned}$ OR $2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+4 \mathrm{KI} \rightarrow 2 \mathrm{CuI}+\mathrm{I}_{2}+4 \mathrm{KNO}_{3}$ Oxidation numbers $\mathrm{Cu}+2 \rightarrow \mathrm{Cu}+1 ; \mathrm{I}-1 \text { to } 0$

Need to get in touch?

If you ever have any questions about OCR qualifications or services (including administration, logistics and teaching) please feel free to get in touch with our customer support centre.

Call us on
01223553998
Alternatively, you can email us on
support@ocr.org.uk
For more information visit

$\square]$
 ocr.org.uk/qualifications/resource-finder

O ocr.org.uk
f Twitter/ocrexams
y locrexams
in /company/ocr

- locrexams

OCR is part of Cambridge University Press \& Assessment, a department of the University of Cambridge.
For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored. © OCR 2022 Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee. Registered in England. Registered office The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA.

Registered company number 3484466 . OCR is an exempt charity.
OCR operates academic and vocational qualifications regulated by Ofqual, Qualifications Wales and CCEA as listed in their qualifications registers including A Levels, GCSEs, Cambridge Technicals and Cambridge Nationals.

OCR provides resources to help you deliver our qualifications. These resources do not represent any particular teaching method we expect you to use. We update our resources regularly and aim to make sure content is accurate but please check the OCR website so that you have the most up-to-date version. OCR cannot be held responsible for any errors or omissions in these resources.

Though we make every effort to check our resources, there may be contradictions between published support and the specification, so it is important that you always use information in the latest specification. We indicate any specification changes within the document itself, change the version number and provide a summary of the changes. If you do notice a discrepancy between the specification and a resource, please contact us.

Whether you already offer OCR qualifications, are new to OCR or are thinking about switching, you can request more information using our Expression of Interest form.

Please get in touch if you want to discuss the accessibility of resources we offer to support you in delivering our qualifications.

