Surname	Other n	ames
Edexcel International GCSE	Centre Number	Candidate Number
Chemistry Unit: 4CH0 Paper: 2C	y	
•		
Friday 20 January 2012 – Time: 1 hour	Morning	Paper Reference 4CH0/2C

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.
- Show all the steps in any calculations and state the units.

Information

- The total mark for this paper is 60.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

	[]	· · · · · ·		·····	
0	≥ ^{Helium}	Argon	84 Krypton 36 36 36 36 Xe	Xenon 54 Radon 86	
~		19 Fluorine 9 35.5 Chlorine	Bromine Bromine 35 127	lodine 53 210 Astatine 85	
9		16 Oxygen 8 32 Sulfur	79 79 Selenium 34 128 128	Tellurium 52 210 Polonium 84	
Q		14 Nitrogen 7 31 Phosphorus	75 AS Arsenic 33 33 122 Sb	Antimony 51 209 Bismuth 83	
4		12 Carbon 6 6 8 Silicon	73 73 Germanium 32 32 119 SN	Tin 50 107 107 107 107 107 107 107 107 107 10	
က		11 Boron 5 27 Aluminium	70 Gallium 31 31 31 31 31 31 31 31 31 31 31 31 31	Indium 49 204 T T 181 81	
		L	55 Zinc 30 30 112 Cd	Cadmium 48 201 Hg Mercury 80	
			63.5 63.5 Copper 108 AG	Silver 47 197 Au Gold 79	
			Pd S3 Pd Pd S4 Pd Pd Pd S4 Pd Pd P	Palladium 46 195 Pt 78 78	
			59 Cobait 27 20 27 103	Rhodium 45 192 17 77	
			R 101 28 10 10 28		
Group	Hydrogen 1 - 1		52 55 Cr Mn Chromium Manganese 24 25 96 99 Mo Tc	Technetium 43 186 Re Rhenium 75	Key
			Chromium 24 24 86 86	Molybdenum 42 184 V Tungsten 74	
			ND 23 23 23 23 23 23 23 23 23 23 23 23 23 2		
			48 Tritanium 22 91 Zr	Zirconium 40 179 Hf 72 72	
			45 Scandium 21 21 89	1 8 1	
N		9 Beryllium 4 Mg Magnesium	S 88 S alcium S 88 S 9 49 40 40 40 40 40 40 40 40 40 40 40 40 40	Strontium 38 137 Ba Ba Ba Ba	Hadium 88
-		Lithium 3 23 Sodium	Potassium 19 19 19 19	Rubidium 37 133 Caesium 55	Francium 87
Period	-	N M	4 (~

Key Relative atomic mass Symbol Name Atomic number

2

THE PERIODIC TABLE

	in electron.	w the relative ma		arge of a proton, a r	(4)
					(4)
		Proton	Neutron	Electron	
	Relative mass			1/1840	
	Relative charge	+ 1			
	symbol for an atom o State the number of p		1		this isotope.
	Number of protons				
	Number of neutrons .				
	Number of electrons				
(ii)	What is meant by the	e term isotopes ?			(2)
A sar Use 1	nine has two naturally nple of bromine cont bromine-79 this information to ca your answer to two	ained the two iso = 50.7% and lculate the relativ	topes in the follow bromine- $81 = 49$	ving proportions: 0.3%	(2)
			(Total f	or Question 1 = 10	marks)

- 2 Use the Periodic Table on page 2 to help you answer this question.
 - (a) Part of the Periodic Table is shown.

										Α
	E		 	 	 		D			
В									С	

In each part of this question, place a cross (\boxtimes) in **one** box to identify the letter, **A** to **E**, that represents

(i) a metal that reacts violently with water

			5			(1)
	A	B ⊠	C	D	E	(1)
(ii)	a noble gas					(1)
	A	B ⊠	C ĭ	D	E	(1)
(iii)	a Group 2 n	netal				(1)
	A	B	C	D	E	(1)
(iv)	a halogen					(1)
	A	B	C	D	E	(1)

(b) Complete these sentences by placing a cross (\boxtimes) in **one** box next to the correct answer. The elements in the Periodic Table are arranged in order of increasing (i) (1) number of neutrons \mathbf{X} atomic number \mathbf{X} relative atomic mass \mathbf{X} mass number \times (ii) Elements in the same group in the Periodic Table have the same number of (1) electrons in the outer shell \mathbf{X} protons in the nucleus \mathbf{X} neutrons in the nucleus \times \mathbf{X} atoms (Total for Question 2 = 6 marks)

5

Lead(II) sulfate, PbSO ₄ , is an insoluble salt.	
t can be made as a precipitate from a solution of lead(II) nitrate, $Pb(NO_3)_2$	
a) (i) Identify a substance that could be added to lead(II) nitrate solution to for precipitate of lead(II) sulfate.	
	(1)
(ii) Write a chemical equation for the reaction between lead(II) nitrate and the you identified in (a)(i).	ne substance
	(2)
(iii) Outline how you would produce a pure, dry sample of lead(II) sulfate fro	om the
reaction mixture in (a)(ii).	(3)
b) A solution of lead(II) nitrate can be made by reacting solid lead(II) carbonate dilute nitric acid.	with
The equation for this reaction is:	
$PbCO_3(s) + 2HNO_3(aq) \rightarrow Pb(NO_3)_2(aq) + CO_2(g) + H_2O(l)$	
State two observations you would make when dilute nitric acid is added to so	olid
lead(II) carbonate.	(2)
(Total for Question 3 =	= 8 marks)

4 When magnesium is burned in air, it reacts with oxygen, O₂, to form magnesium oxide, MgO

A class of students investigated the relationship between the mass of magnesium burned and the mass of magnesium oxide formed.

Each student was given a different mass of clean magnesium to heat.

The students used the following method.

- Weigh a crucible and lid
- Place the magnesium ribbon in the crucible, replace the lid, and reweigh
- Heat the crucible as shown in the diagram until the magnesium burns

- Lift the lid from time to time until there is no sign of further reaction
- Allow the crucible and lid to cool and reweigh
- Repeat the heating, cooling and reweighing until two consecutive masses are the same
- Calculate the mass of magnesium oxide formed
- (a) (i) Why is it necessary to lift the lid from time to time while heating?

(1)

(ii) Why is it necessary to repeat the heating until two consecutive masses are the same?

(1)

7

(b) Show how the mass of magnesium oxide formed can be calculated from the readings obtained. (1)

(c) The results of each experiment are given in the table.

Mass of magnesium in g	Mass of magnesium oxide in g
0.24	0.40
0.26	0.64
0.42	0.70
0.62	1.04
0.70	1.20
0.80	1.33

Explain this result.	/4 \
	(1)
c) The equation for the reaction taking place at the positive electrode is: $2Cl^{-}(aq) \rightarrow Cl_{2}(g) + 2e^{-}$	
Ten faradays (10 F) of electricity were passed through an aqueous solution of so	odium chloride
(i) Calculate the amount, in moles, of chlorine formed.	
	(1)
 (ii) Calculate the volume of chlorine formed. (One mole of a gas occupies 24 dm³ at this temperature and pressure) 	
(One mole of a gas occupies 24 cm ⁻ at this temperature and pressure)	(2)
(Total for Question 5 = 7	7 marks)

6	Compound X is a blue, crystalline solid. It contains copper(II) ions (Cu^{2+}), sulfate ions (and water of crystallisation.	(SO ₄ ^{2–})
	 (a) A student dissolved some of compound X in water and then added aqueous sodium hydroxide solution. She obtained a blue precipitate. 	
	Give the formula of the blue precipitate formed in the reaction.	(1)
	(b) Another student tested a solution of compound X for sulfate ions using dilute hydrochloric acid, followed by a few drops of barium chloride solution. She obtained a white precipitate.	
	Why is the dilute hydrochloric acid necessary in this test?	(1)
	(c) The empirical formula of compound X is $CuSO_9H_{10}$	
	Write the formula of compound X to show its water of crystallisation.	(1)
	(d) Compound X gives a blue-green colour in a flame test.	
	Outline how you would carry out a flame test.	(2)
	(Total for Question 6 = 5 ma	rks)

BLANK PAGE

7 The table shows percentage by mass of the fractions obtained from a sample of crude oil and the percentage market demand for these fractions.

Fraction	Percentage by mass in crude oil	Market demand (%)
refinery gases	3	5
gasoline	12	28
kerosene	9	20
diesel	15	25
fuel oil	51	20
bitumen	10	2

(a) Why is the market demand for the gasoline fraction greater than that for the fuel oil fraction? (1)

- (b) Cracking is used to make long-chain hydrocarbon molecules into shorter-chain hydrocarbon molecules.
 - (i) Complete the equation to show the other hydrocarbon molecule formed when $C_{20}H_{42}$ is cracked.

(1)

- $C_{20}H_{42} \to \ C_{16}H_{34} \ + \ \ldots$
- (ii) Give the name of a catalyst used in industry to crack long-chain hydrocarbons and state a temperature at which cracking is carried out.

(2)

Catalyst

Temperature

(c) Ethene (C ₂ H ₄) can be produced by cracking long-chain hydrocarbon molecules obtain from crude oil. The ethene produced can then be used to make ethanol.	ined
Ethanol can also be made by the fermentation of sugars.	
(i) Give two advantages of making ethanol from ethene, rather than by fermentation	on. (2)
2	
(ii) Suggest two reasons why ethanol is sometimes made by fermentation, rather than from ethene.	(2)
1	
2	
(Total for Question 7 = 8 ma	rks)
TURN OVER FOR QUESTION 8	
	15 Turn over

8 Sulfur dioxide, SO_2 , is used as a preservative in wine.

The sulfur dioxide content of a wine can be found by titration. A chemist found that 25.0 cm³ of a sample of wine reacted with exactly 15.00 cm³ of 0.0010 mol/dm³ aqueous iodine, $I_2(aq)$.

The equation for the reaction is

$$SO_2(aq) + I_2(aq) + 2H_2O(l) \rightarrow SO_4^{2-}(aq) + 2I^{-}(aq) + 4H^{+}(aq)$$

(a) Calculate the amount, in moles, of iodine in 15.00 cm^3 of a 0.0010 mol/dm^3 solution.

(2)

(b) Deduce the amount, in moles, of sulfur dioxide in 25.0 cm^3 of the wine.

(c) Calculate the concentration, in mol/dm³, of sulfur dioxide in the wine.

(2)

(1)

(d) Calculate the concentration, in g/dm^3 , of sulfur dioxide in the wine.

(2)

(e) A concentration of sulfur dioxide that is greater than 0.16 g/dm³ makes wine unpleasant to drink.

Use the value you have calculated in (d) to state whether the wine is drinkable.

(1)

(Total for Question 8 = 8 marks)

TOTAL FOR PAPER = 60 MARKS

