Mechanics 2

Q1		Mark	Comment	Sub
(a) (i)	either In direction of the force $I=F t=m v$ so $1500 \times 8=4000 \mathrm{v}$ giving $v=3$ so $3 \mathrm{~m} \mathrm{~s}^{-1}$ or N2L gives $a=\frac{1500}{4000}$ $v=0+\frac{1500}{4000} \times 8$ giving $v=3$ so $3 \mathrm{~m} \mathrm{~s}^{-1}$	M1 A1 A1 M1 A1 A1	Use of $F t=m v$ Appropriate use of N2L and uvast	3
(ii)	PCLM $12000=4000 V_{R}+500 V_{S}$ So $24=8 V_{\mathrm{R}}+V_{\mathrm{S}}$ NEL $\frac{V_{\mathrm{S}}-V_{\mathrm{R}}}{0-3}=-0.2$ so $V_{S}-V_{R}=0.6$ Solving $V_{\mathrm{R}}=2.6, \quad V_{\mathrm{S}}=3.2$ so ram $2.6 \mathrm{~m} \mathrm{~s}^{-1}$ and stone $3.2 \mathrm{~m} \mathrm{~s}^{-1}$	M1 A1 M1 A1 A1 F1	Appropriate use of PCLM Any form Appropriate use of NEL Any form Either value	6
(iii)	$\begin{aligned} & 0.5 \times 4000 \times 3^{2}-0.5 \times 4000 \times 2.6^{2}-0.5 \times 500 \times 3.2^{2} \\ & =1920 \mathrm{~J} \end{aligned}$	M1 B1 A1	Change in KE. Accept two terms Any relevant KE term correct (FT their speeds) cao	3
(b)	see over			

1		Mark	Comment	Sub
$\begin{aligned} & \text { (b) } \\ & \text { (i) } \end{aligned}$	$72 i \mathrm{Ns}$ $8(9 \cos 60 \mathbf{i}+9 \sin 60 \mathbf{j})$ $=(36 \mathbf{i}+36 \sqrt{3} \mathbf{j}) \mathrm{N} \mathrm{s}$	$\begin{aligned} & \text { B1 } \\ & \text { E1 } \end{aligned}$	Neglect units but must include direction Evidence of use of $8 \mathrm{~kg}, 9 \mathrm{~m} \mathrm{~s}^{-1}$ and 60°	
(ii)	$72 \mathbf{i}+(36 \mathbf{i}+36 \sqrt{3} \mathbf{j})=12(u \mathbf{i}+v \mathbf{j})$ Equating components $72+36=12 u \text { so } u=9$ $36 \sqrt{3}=12 v \text { so } v=3 \sqrt{3}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	PCLM. Must be momenta both sides Both	
(iii)	either $4 \times 18=8 \times 9$ so equal momenta so $60 / 2=30^{\circ}$ or $\arctan (3 \sqrt{3} / 9)=\arctan (1 / \sqrt{3})=30^{\circ}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Must be clear statements cao FT their u and v. cao	
		19		

Q 2		Mark	Comment	Sub
$\begin{aligned} & \text { (i) } \\ & \text { (A) } \end{aligned}$	$0.5 \times 80 \times 3^{2}=360 \mathrm{~J}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Use of KE	
(B)	$\begin{aligned} & 360=F \times 12 \\ & \text { so } F=30 \text { so } 30 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { F1 } \end{aligned}$	W = Fd attempted FT their WD	
(ii)	Using the WE equation $\begin{aligned} & 0.5 \times 80 \times 10^{2}-0.5 \times 80 \times 4^{2} \\ & =80 \times 9.8 \times h-1600 \\ & h=6.32653 \ldots \text { so } 6.33(3 \text { s. f. }) \end{aligned}$	M1 M1 B1 A1 A1	Attempt to use the WE equation. Condone one missing term $\Delta K E$ attempted 1600 with correct sign All terms present and correct (neglect signs) cao	5
$\begin{aligned} & \text { (iii) } \\ & \text { (A) } \end{aligned}$	We have driving force $F=40$ so $200=40 \mathrm{v}$ and $v=5$ so $5 \mathrm{~m} \mathrm{~s}^{-1}$	$\begin{aligned} & \mathrm{B} 1 \\ & \text { M1 } \\ & \mathrm{A} \end{aligned}$	May be implied Use of $P=F v$	3
(B)	From N2L, force required to give accn is $\begin{aligned} & F-40=80 \times 2 \\ & \text { so } F=200 \\ & P=200 \times 0.5=100 \text { so } 100 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Use of N2L with all terms present (neglect signs) All terms correct correct use of $\mathrm{P}=\mathrm{Fv}$ cao	5
		17		

Q 3		Mark	Comment	Sub
(i)	$\begin{aligned} & \text { For } \bar{z} \\ & (2 \times 20 \times 100+2 \times 50 \times 120) \bar{z} \\ & =2 \times 2000 \times 50+2 \times 6000 \times 60 \\ & \text { so } \bar{z}=57.5 \\ & \text { and } \bar{y}=0 \end{aligned}$	M1 B1 B1 A1 B1	Method for c.m. Total mass of 16000 (or equivalent) At least one term correct NB This result is given below. NB This result is given below. Statement (or proof) required. N.B. If incorrect axes specified, award max 4/5	
(ii)	$\overline{\mathrm{y}}$ and $\overline{\mathrm{z}}$ are not changed with the folding For \bar{x} $100 \times 120 \times 0+2 \times 20 \times 100 \times 10=16000 \bar{x}$ so $\bar{x}=\frac{40000}{16000}=2.5$	E1 M1 B1 E1	A statement, calculation or diagram required. Method for the c.m. with the folding Use of the 10 Clearly shown	4
(iii)	Moments about AH. Normal reaction acts through this line c.w. $\begin{aligned} & P \times 120-72 \times(20-2.5)=0 \\ & \text { so } P=10.5 \end{aligned}$	M1 B1 B1 A1 A1	May be implied by diagram or statement 20-2.5 or equivalent All correct cao	5
(iv)	$\begin{aligned} & F_{\max }=\mu R \\ & \text { so } F_{\max }=72 \mu \end{aligned}$ For slipping before tipping we require $72 \mu<10.5$ so $\mu<0.1458333$... ($7 / 48$)	M1 A1 M1 A1	Allow $F=\mu R$ Must have clear indication that this is max F Accept \leq. Accept their $F_{\text {max }}$ and R. cao	
		18		

Q 4		Mark	Comment	Sub
(i)	Centre of CE is 0.5 m from D a.c. moment about D $2200 \times 0.5=1100$ so 1100 Nm c. w moments about D $R \times 2.75-1100=0$ $R=400 \text { so } 400 \mathrm{~N}$	B1 M1 E1 M1 B1 A1	Used below correctly Use of their 0.5 0.5 must be clearly established. Use of moments about D in an equation Use of 1100 and 2.75 or equiv	6
(ii)	c.w moments about D $\begin{aligned} & W \times 1.5-1100-440 \times 2.75=0 \\ & \text { so } W=1540 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { E1 } \end{aligned}$	Moments of all relevant forces attempted All correct Some working shown	3
(iii) (A)	c.w. moments about D $\begin{aligned} & 1.5 \times 1540 \cos 20-1.75 T \\ & -1100 \cos 20-400 \times 2.75 \cos 20=0 \end{aligned}$ $T=59.0663 \ldots \text { so } 59.1 \mathrm{~N}(3 \mathrm{s.} . \mathrm{f} .)$	M1 M1 A1 B1 A1 A1	Moments equation. Allow one missing term; there must be some attempt at resolution. At least one res attempt with correct length Allow sin $\leftrightarrow \cos$ Any two of the terms have cos 20 correctly used (or equiv) 1.75 T All correct cao Accept no direction given	6
(iii) (B)	either Angle required is at 70° to the normal to CE so $T_{1} \cos 70=59.0663$... so $T_{1}=172.698 \ldots$ so 173 N (3 s.f.) or $400 \cos 20 \times 2.75+1100 \cos 20$ $=1540 \cos 20 \times 1.5-T \sin 20 \times 1.75$ $T=172.698 \ldots \text { so } 173 \mathrm{~N} \text { (3s.f.) }$	$\begin{aligned} & \mathrm{B} 1 \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	FT (iii) (A) Moments attempted with all terms present All correct (neglect signs) FT(iii)(A)	3
		18		

