

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary GCE

CHEMISTRY A

F321

Unit F321: Atoms, Bonds and Groups

Specimen Mark Scheme

The maximum mark for this paper is **60**.

Question Number	Answer	Max Mark
1(a)(i)	atoms of the same element with different numbers of neutrons/different masses \checkmark	[1]
(ii)	79 Br 35 protons, 44 neutrons, 35 electrons ✓ 81 Br 35 protons, 46 neutrons, 35 electrons ✓	[2]
(iii)	(1s ²)2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁵ √	[1]
(b)(i)	 iodide has been converted to iodine ✓ (with correct use and spelling of iodide and iodine) The 1st experiment shows that bromine is more reactive than iodine ✓ The 2nd experiment shows that chlorine is more reactive than bromine ✓ Accept 1 mark for 2nd and 3rd marking points if the correct reactivity order of chlorine > bromine > iodine has been stated. 	[3]
(ii)	$Br_2 + 2l^- \longrightarrow 2Br^- + l_2 \checkmark$	[1]
(c)	add $AgNO_3/Ag^+$ (to a solution of the food) \checkmark $Ag^+(aq) + Cl^-(aq) \longrightarrow AgCl(s) \checkmark$ degree of cloudiness/whiteness/intensity indicates relative quantity \checkmark sodium ion content needs to be determined as well \checkmark	[4]
2(a)(i)	S√	[1]
(ii)	Al ✓	[1]
(iii)	B✓	[1]
(iv)	Ca√	[1]
(v)	K✓	[1]
(vi)	K✓	[1]
(b)(i)	atomic radii decrease /similar shielding /electrons added to same shell \checkmark number of protons in the nucleus increases \checkmark nuclear attraction increases \checkmark	[3]
(b)(ii)	$Na^{2+}(g) \longrightarrow Na^{3+}(g) + e^-$: equation and state symbols \checkmark	[1]
(b)(iii)	large jump (in energy) between the 4th and 5th ionisation energies \checkmark four electrons in outer shell so element is Si \checkmark	[2]

Question Number	Answer	Max Mark
3(a)(i)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	
	positive ions \checkmark electrons \checkmark (must be labelled)	[2]
(ii)	the electrons move \checkmark	[1]
(b)(i)	attraction between oppositely charged ions \checkmark	[1]
(ii)	$\left[\begin{array}{c} Mg \\ Mg \end{array}\right]^{2+} \left[\begin{array}{c} I \\ I $	[2]
(iii)	MgCl ₂ does not conduct when solid because ions are fixed in lattice \checkmark H ₂ O does not conduct as there are no free charge carriers/water molecules are uncharged \checkmark MgCl ₂ conducts when aqueous because ions are free to move \checkmark	[3]
(c)	To boil Cl_2 , van der Waals' forces/intermolecular forces are broken (with van der Waals/intermolecular spelt correctly) \checkmark To boil C, covalent bonds are broken \checkmark	
	covalent bonds are stronger than van der Waals' forces \checkmark	[3]

Question Number	Answer	Max Mark
4(a)(i)	Molar mass of CaCO ₃ = 100.1 g mol ⁻¹ \checkmark 2.68/100.1 = 0.0268/0.027 \checkmark	[2]
(ii)	$0.0268 \text{ mol x } 24,000 = 643 \text{ cm}^3 \checkmark$	[1]
(iii)	moles $HNO_3 = 2 \times 0.0268$ = 0.0536 /0.054 mol \checkmark (<i>i.e. answer to (i) x 2</i>) volume of $HNO_3 = 0.0536 \times 1000/2.50 = 21.4 \text{ cm}^3 \checkmark$	[2]
(b)	Molar mass of anhydrous calcium nitrate = 164.1 g mol ⁻¹ \checkmark Ratio Ca(NO ₃) ₂ : H ₂ O = 69.50/164.1 : 30.50/18 or 0.4235 : 1.694 or 1 : 4 \checkmark Formula = Ca(NO ₃) ₂ •4H ₂ O \checkmark	[3]
(c)(i)	because Ca has changed from 0 to +2 \checkmark and H has changed from +1 to 0 \checkmark	[2]
(ii)	Calcium reacts with water producing hydrogen/H ₂ /calcium/hydroxide/Ca(OH) ₂ \checkmark (i.e. one product) Ca(s) + H ₂ O(I) \longrightarrow Ca(OH) ₂ (aq) + H ₂ (g) \checkmark (i.e. full equation) Equation would subsume both two marks	[2]
	6	

Question Number	Answer	Max Mark
5(a)(i)	$ \begin{array}{ccccccc} H_2O & NH_3 \\ 2 & 3 & \checkmark \\ 2 & 1 & \checkmark \end{array} $	[2]
(ii)	H → N''H H 107º	
	shape \checkmark bond angle labelled on diagram as 107 ° \checkmark $\overrightarrow{S}_{120^{\circ}}$ O	
	shape \checkmark bond angle labelled on diagram as 110–120° \checkmark	[4]
(b)	H bonding from lone pair on O of 1 $\rm H_2O$ molecule to H of another \checkmark dipoles shown \checkmark	
	Two properties: Ice is lighter than water/ max density at 4°C ✓ explanation: H bonds hold H ₂ O molecules apart / open lattice in ice / H-bonds are longer ✓	
	Higher melting/boiling point than expected ✓ explanation: strength of H bonds that need to be broken ✓ must imply that intermolecular bonds are broken	
	High surface tension/viscosity ✓ explanation:strength of H bonds across surface ✓	[6]
	Paper Total	[60]