Version 1.0

General Certificate of Education (A-level) January 2012

Physics B: Physics in Context PHYB1

(Specification 2455)

Unit 1: Harmony and structure in the universe

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

NOTES

Letters are used to distinguish between different types of marks in the scheme.

M indicates OBLIGATORY METHOD MARK

This is usually awarded for the physical principles involved, or for a particular point in the argument or definition. It is followed by one or more accuracy marks which cannot be scored unless the M mark has already been scored.

C indicates COMPENSATION METHOD MARK

This is awarded for the correct method or physical principle. In this case the method can be seen or implied by a correct answer or other correct subsequent steps. In this way an answer might score full marks even if some working has been omitted.

A indicates ACCURACY MARK

These marks are awarded for correct calculation or further detail. They follow an M mark or a C mark.

B indicates INDEPENDENT MARK This is a mark which is independent of M and C marks.

ecf is used to indicate that marks can be awarded if an error has been carried forward (ecf must be written on the script). This is also referred to as a 'transferred error' or 'consequential marking'.

Where a correct answer only (**cao**) is required, this means that the answer must be as in the marking scheme, including significant figures and units.

cnao is used to indicate that the answer must be numerically correct but the unit is only penalised if it is the first error or omission in the section (see below).

Marks should be awarded for **correct** alternative approaches to numerical question that are not covered by the marking scheme. A correct answer from working that contains a physics error (PE) should not be given credit. Examiners should contact the Team Leader or Principal Examiner for confirmation of the validity of the method, if in doubt.

GCE Physics,	Specification B:	Physics in Conte	xt, PHYB1, Harmor	ny and Structure in the	Universe
--------------	------------------	-------------------------	-------------------	-------------------------	----------

Question 1			
а	max 2 from		
	in progressive waves, all points have the same amplitude (in turn), in stationary waves, they do not	B1	
	in stationary waves, points between nodes are in phase, in progressive waves, all points within one wavelength are out of phase with each other	B1	
	in stationary waves, there is no energy transfer along the wave, in progressive waves, there is	B1	max 2
	stationary waves have nodes and antinodes but progressive waves do not	B1	
	where there are single relevant statements but no clear comparison between stationary and compressive waves, award 1 mark for two such statements		
b	$f \alpha 1/l \text{ or } f = \frac{1}{2l} \sqrt{\frac{T}{\mu}} \text{ or } fl = \text{const}$	C1	2
	657/660 (Hz)	A1	
		Total	4

Question 2			
а	curved path – always curving towards centre line with no abrupt reflection and with ray only in the core	B1	1
b	cladding- lower than core	B1	2
	max in centre and reducing towards outside of the fibre	B1	2
с	all rays paths take same length of time (approximately)/rays travel faster near edge/rays travel slower in the centre	B1	
	idea that pulses do not overlap as much/reduces pulse broadening or dispersion/allows more frequent pulses to be sent	B1	2
		Total	5

Question 3			
	line 2: radiation (era)/electromagnetic wave era	B1	
	line 3: atoms formed/stars begin to form/CMB appears	B1	3
	line 5: 1×10^{10} y to 2×10^{10} y/approximately 4×10^{17} second	B1	
		Total	3

Mark Scheme – General Certificate of Education (A-level) Physics B: Physics in Context – PHYB1 – January 2012

Question 4			
	electrons	M1	
	high energy scattering/inelastic/KE not conserved	M1	3
	demonstrated substructure of proton	A1	
		Total	3

Question 5			
	clearly interference with regular fringes of even width and separation – seen in either blue or red	M1	2
	blue fringes narrower than red	A1	
		Total	2

Question 6			
	boron numbers correct: $A = 11$; $Z = 5$	B1	
	β^{+} correct: A = 0; Z = (+)1	B1	3
	v_e (not anti neutrino) with numbers correct: 0,0	B1	
		Total	3

Question 7			
а	refers to or describes reaction time (not human error)	B1	
	distance or time very small/estimates time taken/comments on high percentage error	B1	1
b i	use of 5% of 500 J/eg 25 (J) seen	C1	
	uses <i>P</i> = <i>E</i> / <i>t</i> eg 25/ <i>t</i> =200	C1	3
	130 (125) ms	A1	
b ii	$200/4\pi r^2/I = P/A \text{ or } I = P/4\pi r^2$ with some substitution	C1	
	7.07×10^{-4}	A1	3
	W m ⁻²	B1	
		Total	7

Qu	estion 8			
а	i	vary continuously with time/can have any value	B1	1
а	ii	has discreet values (usually 2)/allow reference to binary	B1	1
b		changing analogue to digital	B1	
		(analogue signal) is sampled	B1	max 2
		digital signal is (a sequence of) binary numbers	B1	
с	i	the idea of not using all of the information/losing some information/only sending changes of data/predictive/lossy/MP3	B1	1
с	ii	need to store less information/fewer bits or bytes/more films in same space not can store more data	B1	1
d		not losing any of the original signal detail/fidelity stated or explained	B1	1
			Total	7

Question 9		
a i 445 nm ± 5	B1	1
a ii uses 0.0029/450 or their ai condone powers of ten	C1	
6440 or 6170	A1	3
K (allow °C if they have clearly converted their answer)	A1	
b i any 3 from		
absorption	B1	
by (cool) gas at edges of star	B1	
explains why particular frequencies/wavelengths are affected/ characteristic of make-up of star	B1	max 3
reradiated in all directions, (so intensity in our direction reduced)	B1	
b ii 485 nm ± 5	C1	
$6.6 \times 10^{-34} \times 3 \times 10^{8}$ /their λ condone powers of ten	C1	4
4.08×10^{-19} (J)/divides by 1.6×10^{-19}	C1	4
2.55 (eV) (allow reasonable rounding errors)	A1	
	Total	11

Question 10		
	The marking scheme for this question includes an overall assessment for the quality of written communication (QWC). There are no discrete marks for the assessment of QWC but the candidate's QWC in this answer will be one of the criteria used to assign a level and award the marks for this question.	
	Descriptor – an answer will be expected to meet most of the criteria in the level descriptor.	
	Level 3 – good	
	claims supported by an appropriate range of evidence	
	 good use of information or ideas about physics, going beyond those given in the question 	5-6
	 argument well-structured with minimal repetition or irrelevant points 	
	 accurate and clear expression of ideas with only minor errors of grammar, punctuation and spelling 	
	Level 2 – modest	
	claims partly supported by evidence	
	 good use of information or ideas about physics given in the question but limited beyond this 	3-4
	• the argument shows some attempt at structure	
	 the ideas are expressed with reasonable clarity but with a few errors of grammar, punctuation and spelling 	
	Level 1 – limited	
	 valid points but not clearly linked to an argument structure 	
	limited use of information about physics	1-2
	unstructured	
	 errors in spelling, punctuation and grammar or lack of fluency 	
	Level 0	
	 incorrect, inappropriate or no response 	

	Total	6
gravitons not yet confirmed		
gravity: gravitons (?)		
electromag: photons		
• weak: bosons (W, Z)		
 strong: gluons (pions) 		
 different particles for each type of force 		
massive = short range		
vary in mass and range		
not detected during exchange		
 by being interchanged between interacting particles 		
mediate or transmit forces		
Examples of the sort of information or ideas that might be used to support an argument		

Question 11			
а	distance travelled by light in 1 y	B1	1
b i	quasi-stellar radio source (allow star)/black hole in centre of a galaxy	B1	1
b ii	v = H d and some clear substitution of a value of H (in any units) multiplied by a distance (in any units) – condone powers of ten	C1	3
	conversion to parsec/divides by 3.26	C1	Ū
	4.87×10^4	A1	
с	$\Delta \lambda = \frac{v_s}{c} \lambda \text{ or } \frac{5 \times 10^4}{3 \times 10^5} \times 485 \text{ (condone } 3 \times 10^8\text{)}$	C1	
	change in wavelength is 79/81 nm	C1	3
	new wavelength is 564 nm	A1	
d i	(radiation produced soon) after big bang	B1	1
d ii	originally high energy or short wavelength	B1	
	explanation of increase in wavelength eg cooling or expansion of universe/Doppler shift or statement that wavelength is appropriate to current temperature of universe	B1	2
		Total	11

Que	stion 12			
а		curved dish with something looking like a dipole at an appropriate position	M1	2
		(parabolic) reflector and dipole both labelled correctly	A1	
b	i	0.95(5) (°)	B1	1
b	ii	$b = \lambda / \sin\theta$ in symbols or numbers $\frac{2.9 \times 10^{-2}}{\sin(0.955) \text{ or } 0.0167}$	C1	2
		1.75 m ecf	A1	
b	iii	central maximum falling to zero and of approximate correct shape (hump), condone/ignore other maxima	M1	2
		1st minima on both sides at 600 km on each side	A1	
			Total	7

UMS conversion calculato	r <u>www.aqa.org.uk/umsconversion</u>
--------------------------	---------------------------------------