

GCE

Mathematics

Advanced GCE

Unit 4729: Mechanics 2

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

Question		Expected Answer	Mark	Rationale/Additional Guidance
1	(i)	$3x_G = 2x0.3 + 1x0.6 \text{ OR } 3x_G = 2x0.3 + 0 \text{ OR } 3x_G = 4x0.3$	M1	Table of moments idea. M0 for reducing to 1D problem.
		OR $3y_G = 1x0.3 + 1x0.6 + 0$ OR $3y_G = 4x0.3 - 1x0.3$		Masses/weights may be included.
		$x_G = 0.4$ (from AD) OR $x_G = 0.2$ (from BC)	A1	
		$y_G = 0.3m$ from AB or CD	A1	
		$AG^2 = 0.4^2 + 0.3^2$	M1	Pythagoras with 2 appropriate distances.
		AG = 0.5 m	A1	This may only be seen in (ii), allow M1A1 in this case.
			[5]	
	(ii)	v = 0.5x3	M1	Allow use of candidate's 0.2, 0.4, 0.3, 0.5
		$v = 1.5 \text{ ms}^{-1}$	A1	
			[2]	
2	(i)		M1	Tractive force x speed = power
		$(k25^{3/2}) \times 25 = 15000$	A1	
		k = 4.8	A1	
			[3]	
	(ii)	$R = 4.8 \times 16^{3/2}$	B1	307.2
			M1	N2L, 4 terms to find tractive force (T)
		$T - 4.8x16^{3/2} + 700gx1/15 = 700x0.3$	A1	Allow cv(R), R not 600; (T = 59.866)
		P = 59.9 x 16	M1	16xTractive force
		P = 958 W	A1	
			[5]	

3	(i)		$T_{A}\cos 30 + T_{B}\cos 60 = 0.4g$	M1	Resolves vertically, 3 terms
			2Tcos30 + Tcos60 = 0.4g	A1	T = 1.756. Watch for MR of Tcos30 + 2Tcos60 = 0.4g
			$T_B = 1.76 \text{ N}$	A1	
			$T_A = 3.51 \text{ N}$	A1	Accept 3.52
				[4]	
	(ii)		r = 0.5sin30 (= 0.25)	B1	
				M1	N2L radial, 3 terms
			$3.51\sin 30 + 1.76\sin 60 = 0.4\omega^2 0.5\sin 30$	A1ft	cv(1.76, 3.51, 0.25)
			$\omega = 5.72 \text{ rad s}^{-1}$	A1	Accept 5.73
				[4]	
4	(i)		WD = 100cos20 x 30	M1	Product of 3 relevant elements. Angle could be 5, 25 or
					complements
			WD = 2820 J	A1	2819.1
				[2]	
	(ii)		PE = 25g x 30sin5	M1	Product of weight and vertical height. Allow without g
			PE = 641	A1	640.6
				[2]	
	(iii)			M1	4 term energy equation
			2819.1 = 640.6	A1ft	ft(cv 2820 and cv 641)
			$+30x70 + 25v^2/2$	A1	
			$v = 2.51 \text{ ms}^{-1}$	A1	cao
				[4]	
		OR	25a = 100cos20 -70 -25gsin5	*M1	4 term equation
			a = 0.105	A1	Allow 0.1 here
			$v^2 = 2 \times 30 \times 'a'$	dep*M1	Or equivalent complete method
			v = 2.51	A1	cao
				[4]	

5	(i)		$x_H = 3x0.6/8$	B1	CoM hemisphere ($x_H = 0.225$), may be implied
				M1	Use of table of moments idea
			$\pi(0.6^2 \times 0.6)(0.6/2) - (0.6^3 \times 2\pi/3)0.225$	A1	SC Volume of sphere used, max B1M1A1, moment
			$= \pi x 0.6^3 (1+2/3) x_G$	A1	equation fully correct for A1 (3/5)
			$x_G = 0.09 \text{ m}$ AG	A1	Accept -0.09
				[5]	'
	(ii)	(a)		M1	Attempt at moments (must resolve), allow without g
			mg(0.09cos45) =	A1	
			2(0.6+0.6cos45+0.6sin45)	A1	$2(0.6+\sqrt{[0.6^2+0.6^2]})$
			m = 4.65kg	A1	(4.6451)
				[4]	
	(ii)	(b)		M1	Ratio force/weight
			2/4.6451g	A1	cv(4.65)
			$\mu \ge 0.0439$	A1	Correct inequality sign, accept 0.044
				[3]	
	(")		0 (44:00)2 0 1		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
6	(i)		$0 = (14\sin 30)^2 - 2gh$	M1	h = $(14\sin 30)x1/1.4 - g(1/1.4)^2/2$ or use $(u^2\sin^2\theta)/2g$
			h = 2.5 m	A1	
	(11)			[2]	
	(ii)			M1	Impulse = change in momentum
			0.4.45 0.4/44 00)		Not 14 or 0 for horizontal speed before impulse
			$0.4x15 = 0.4(14\cos 30) + 1$	A1	aef
			I = 1.15	A1	
				[3]	
	(iii)		$v^2 = (14\sin 30)^2 + 15^2$	M1	Not $(14\sin 30)^2 + (14\cos 30)^2$
			$v = 16.6 \text{ ms}^{-1}$	A1	Allow √274
			$\tan\theta = 14\sin 30/15 \text{ OR } \tan\psi = 15/14\sin 30$	M1	Correct trig to find an appropriate angle; not 14cos 30 for 15
			$\theta = 25(.0)^{\circ} \text{ OR } \psi = 65(.0)^{\circ}$	A1	
			$\theta = 25(.0)$ ON $\psi = 65(.0)$	[4]	
	(iv)		t = 14sin30/g (= 1/1.4 = 0.7142)	M1	Rise or fall time (not to be given in (i))
	` ′		T = 1.43 s	A1	Accept 10/7
			$R = 14\cos 30/1.4 + 15/1.4$	M1A1	$(14^2\sin(2x30) + 16.6^2\sin(2x25))/2g$. 14 resolved, 15 not
			R = 19.4 m	A1	
				[5]	

		1		_	
7	(i)			M1	Uses restitution
			b + a =1.8e	A1	b - a =1.8e
				M1	Uses momentum
			0.7b - 0.2a=0.2x1.8	A1	0.7b + 0.2a=0.2x1.8, signs consistent with first eqn
				M1	Solves 2 simultaneous equations (eliminate a or b)
			b = 0.4(1+e)	A1	
			a = 1.4e - 0.4	A1	a = 0.4 - 1.4e
			1.4e - 0.4 > 0.4 + 0.4e	M1	Using a>b, correct signs in a essential
			e > 0.8	A1	
				[9]	
	OR	Last 5	Using a > b	M1	correct signs in a essential
		marks	a > 0.72	A1	
			b > 0.72	A1	
			1.8e > 0.72 + 0.72	M1	
			e > 0.8	A1	
	OR	Last 5	Using a = b to find a or b	M1	
		marks	a (or b) = 0.9e and a (or b) = 0.72	A1	
			e = 0.8	A1	
			Convincing argument for correct inequality	M1	
			e > 0.8	A1	
	OR	Last 5		M1	Solves 2 simultaneous equations (eliminate a or b)
		marks	a = 1.4e - 0.4 or b =0.4(1+e)	A1	aef or multiples thereof
			Using a > b	M1	correct signs in a essential
			a > 0.9e or b < 0.9e	A1	aef or multiples thereof
			e > 0.8	A1	and of manaproof motors
			0 7 0.0	1,,,	

(ii)	$c - (\pm 0.25) = 1x0.75$	M1	Uses restitution with e = 1, either
	c = 0.5, 1	A1A1	Or 0.75 ± 0.25
	$0.75 \times 0.7 = 0.25 \times 0.7 + m (x1)$		Uses momentum conservation with correct
	OR		combination of sign and c value
	$0.75 \times 0.7 = -0.25 \times 0.7 + 0.5 \text{m}$	M1	$OR \text{ mx}(0.75 \pm 0.25) \pm 0.7 \text{x} + 0.25 = 0.75 \text{x} + 0.7 \text{x} = 0.75 \text{x} + 0.7 \text{x} = 0.75 \text{x} =$
	m = 0.35 (from first equation)	A1	
	m=1.4 (from second equation)	A1	
		[6]	
OR	$\frac{1}{2}$ x0.7x0.75 ² = $\frac{1}{2}$ x0.7X0.25 ² + $\frac{1}{2}$ mc ²	B1	1/2 may not be seen
	$0.7x \ 0.75 = 0.7x(+/-0.25) + mc$	M1	At least one momentum equation
		A1	mc = 0.35 and 0.7
	Solving simultaneous equations	M1	
	m = 0.35	A1	
	m = 1.4	A1	
	Total	[72]	

[END]

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

