F322 Mark S F322 Chains, Energy and Resources

0	Question		Expected Answers	Marks	Additional Guidance
1	(a)		Fractional distillation ✓	2	DO NOT ALLOW just 'distillation'
			Because fractions have different boiling points ✓		For fractions, ALLOW components OR hydrocarbons OR compounds ALLOW condense at different temperatures ALLOW because van der Waals' forces differ between molecules IGNORE reference to melting points IGNORE 'crude oil' OR 'mixture' has different boiling points' but ALLOW 'separates crude oil by boiling points
	(b)	(i)	Decane ✓	1	DO NOT ALLOW deceane
		(ii)	Skeletal formula of branched C ₁₀ H ₂₂ ✓	1	Formula must be skeletal AND must not include any symbol, e.g. CH ₃ Any possible skeletal formulae e.g.

F322		Mark Sche	eme	January 2010	
Ques	stion	Expected Answers		Additional Guidance	
	(iii)	Decane has more surface contact OR branched chains have less surface contact ✓	2	Both answers need to be comparisons Assume 'it' refers to decane IGNORE surface area ALLOW straight chains can get closer together OR branched chains cannot get as close to one another IGNORE branched chain are more compact	
		Decane has more van der Waals' forces OR branched chains have fewer van der Waals' forces ✓		ALLOW Decane has stronger van der Waals' forces OR branched chains have weaker van der Waals' forces More intermolecular forces is not sufficient	
	(iv)	Branched chains have more efficient combustion OR decane has less efficient combustion ✓	1	 ALLOW branched chains are easier to burn OR easier to combust OR burn better OR more efficient fuel OR less likely to produce pre-ignition or knocking OR increases octane rating ALLOW ORA for decane 	

F32	F322 Question		Ma	January 2010	
(Expected Answers	Marks	Additional Guidance
					Better fuel is NOT sufficient Burns more cleanly is NOT sufficient
	(c)	(i)	$C_{10}H_{22}$ + 15½ O_2 → 10 CO_2 + 11 H_2O All four species correct ✓ balancing of four correct species ✓	2	ALLOW any correct multiple IGNORE state symbols
		(ii)	$N_2 + O_2 \longrightarrow 2NO \checkmark$	1	ALLOW any correct multiple including fractions IGNORE state symbols The mark is for the equation IGNORE writing

F322		Mark S	cheme	January 2010	
Question	n	Expected Answers		Additional Guidance	
(d)	(i)	Species with an unpaired electron ✓	1	 ALLOW atom, molecule or particle with an unpaired electron ALLOW 'has an unpaired electron' ALLOW particle formed by homolytic fission DO NOT ALLOW particle with a single electron OR particle with a free electron 	
,	(ii)	catalyst ✓	1		
	(iii)	$O + O_2 \longrightarrow O_3$ OR O reacts with O ₂ to make ozone OR the reaction is reversible \checkmark	2	ALLOW $O_2 + O \rightleftharpoons O_3$ OR $O_3 \rightleftharpoons O_2 + O \checkmark \checkmark$	
		Rate of formation of ozone is the same as rate of		ALLOW is in equilibrium	
		decomposition ✓		OR ⇒ in correct equation	
				OR has steady state condition ✓	
				IGNORE other equations involving ozone	
	(iv)	absorbs (harmful) UV ✓	1	ALLOW 'keeps out UV' OR 'filters UV'	
				ALLOW increased UV could cause skin cancer	
				OR increased UV could cause cataracts	
				OR increased UV could cause mutation of crops ✓	
				IGNORE gamma	
		То	tal 15		

C	Questi	on	Expected Answers	Marks	Additional Guidance
2	(a)	(i)	$2H_2O_2 \longrightarrow 2H_2O + O_2 \checkmark$	1	ALLOW any correct multiple including fractions IGNORE state symbols
		(ii)	More crowded particles OR more particles per (unit) volume ✓	2	ALLOW particles are closer together DO NOT ALLOW 'area' instead of 'volume' IGNORE 'more concentrated particles'
			more collisions per second OR more frequent collisions ✓		ALLOW collisions more often OR increased rate of collision OR collisions are more likely OR there is a greater chance of collisions 'More collisions' is not sufficient
		(iii)	Any two from the following:	2	
			Reaction takes alternative route ✓ Activation energy is lowered ✓		ALLOW catalyst changes reaction mechanism
			More molecules have energy above activation energy OR more molecules have enough energy to react ✓		ALLOW an alternative approach using adsorption particles adsorbed onto surface ✓ so bonds weakened as a result of the adsorption ✓

F322		Mark Sch	January 2010	
Que	estion	Expected Answers	Marks	Additional Guidance
	(iv) Correct curve for higher temperature ✓	3	maximum of curve to rightAND lower than maximum of original curveAND above dotted line at higher energy as shown in diagram belowIGNORE minor point of inflexion of curve
		Activation energy does not change OR clearly labelled on diagram, e.g. E_a OR $E \checkmark$		Note that the diagram above would score all 3 marks
		More molecules have energy above activation energy OR more molecules have enough energy to react ✓		More successful collisions is not sufficient
((b) (i)	<u>34.0</u> × 100 267.4 ✓	2	First mark for 267.4 OR (34.0 + 233.4) OR (169.3 + 98.1) at bottom of fraction with or without × 100
		12.7% ✓		 ALLOW from 2 sig figs up to calculator value ALLOW full marks for 13 OR 12.7 OR 12.72 OR 12.715 up to calculator value with no working out 12.71 scores one mark only NO ECF for this part from incorrect numbers in first expression

Question	Expected Answers	Marks	Additional Guidance	
(ii)	Any three from the following:	3		
	Oxygen comes from air ✓		IGNORE hydrogen comes from the air	
	 No poisonous materials formed OR no poisonous materials involved ✓ No waste products formed OR atom economy is 100% ✓ Anthraquinone is regenerated OR recycled OR used again 		IGNORE harmful ALLOW higher atom economy	
(c)	 OR Anthraquinone acts as a catalyst ✓ Bond breaking absorbs energy AND bond making releases energy ✓ 	2	ALLOW bond breaking is endothermic AND bond making is exothermic	
	More energy released than absorbed ✓		 ALLOW exothermic change transfers more energy than endothermic change OR bond making transfers more energy than bond breaking OR '(the sum of the) bond enthalpies in the products is greater than the (sum of the) bond enthalpies in the reactants' OR '(the sum of the) bond enthalpies of the bonds made is greater than (the sum of) the bond enthalpies of the bonds broken' 	
			IGNORE reference to strong and weak bonds IGNORE enthalpy of products is less than enthalpy of reactants	
	Total	15		

F32	F322		N	lark Scheme	January 2010		
C)uesti	on	Expected Answers	Marks	Additional Guidance		
3	(a)		Respiration ✓	1	IGNORE anaerobic		
	(b)	(i)	100 × 4.18 × 17.3 ✓	2	ALLOW 7231 J ✓		
			7.23 (kJ) ✓		 ALLOW 7.23 with no working out ALLOW from 7.2 up to calculator value of 7.2314 ALLOW from 0.060 up to calculator value for 1 mark (i.e. ECF from use of <i>m</i> = 0.831 in first stage) IGNORE sign 		
		(ii)	M _r = 180 ✓	2			
			amount = 4.62 × 10 ⁻³ (mol) ✓		ALLOW 4.6 × 10^{-3} OR 4.62 × 10^{-3} OR 4.617 × 10^{-3} up to calculator value DO NOT ALLOW 0.005 ALLOW ECF from wrong M_r		
		(iii)	$\Delta H_c = 1560 \text{ (kJ) } \mathbf{OR} 1570 \text{ (kJ)}$ but answer must be to 3 sig fig \checkmark minus sign \checkmark	2	ALLOW ECF from 'answer to (i) ÷ answer to (ii)' but answer must be to 3 sig fig minus mark is an independent mark		

F322	Mark Scheme			January 2010
Question	Expected Answers	Marks	Ad	ditional Guidance
(c)	+1250 ✓	3	ALLOW full marks fo	r −2830 with no working out $\checkmark \checkmark \checkmark$
	+(-394 × 6) + (-286 × 6) OR -4080 ✓		ALLOW for 2 marks +2830	: cycle wrong way around
	-2830 ✓		OR 1400 OR 860	one value not × 6
			OR –5330 OR +5330	wrong sign for 1250 or 4080
			OR +570 ✓ ✓	correct cycle but not × 6
			ALLOW for 1 mark: -1400 OR -860	cycle wrong way around and one value not × 6
			OR –570	cycle wrong way around and not × 6
			OR –1930 OR +1930	\checkmark wrong sign and not × 6
			Note: There may be	other possibilities.
(d)	Any two from the following:	2		
	Heat released to the surroundings \checkmark		ALLOW heat loss	
	Incomplete combustion OR incomplete reaction OR not everything burns ✓		IGNORE reference to	evaporation
	Non-standard conditions ✓			
	Total	12		

Ques	stion	Expected Answers	Marks	Additional Guidance	
4 (a)		$CH_4 + Br_2 \longrightarrow CH_3Br + HBr \checkmark$	1	ALLOW any correct multiple IGNORE state symbols	
	(ii)	Dibromomethane OR tribromomethane OR tetrabromomethane ✓	1	ALLOW 1,1-dibromomethane OR 1,1,1-tribromomethane etc ALLOW 1-dibromomethane DO NOT ALLOW 2,2-dibromomethane etc ALLOW correct formulae e.g. CH ₂ Br ₂	
	(iii)	Br ₂ → 2Br OR homolytic fission of bromine \checkmark Br + CH ₄ → HBr + CH ₃ \checkmark CH ₃ + Br ₂ → CH ₃ Br + Br \checkmark Br + CH ₃ → CH ₃ Br OR Br + Br → Br ₂ \checkmark Ethane made when two methyl radicals react OR CH ₃ + CH ₃ → C ₂ H ₆ \checkmark Quality of Written Communication – Consists of initiation step linked to correct equation propagation step linked to correct equation propagation step linked to correct equation propagation step linked to correct equations \downarrow a radical on the left and a radical on the right termination step linked to correct equations: 2 names of steps linked to correct equations \checkmark BUT 3 names of steps linked to correct equations \checkmark	7	All equations can be described in words Radicals do NOT need a single dot IGNORE any state symbols ALLOW any other suitable termination If no equations are given to link the names of the step then award one mark for mention of all three steps	

F322	Mark	Scheme	January 2010
Question	Expected Answers	Marks	Additional Guidance
(b)	EITHER Nucleophilic substitution \checkmark Example of nucleophilic substitution \checkmark Heterolytic fission \checkmark C-I curly arrow \checkmark Correct dipole on C— I bond \checkmark OH ⁻ curly arrow from one lone pair on O of OH ⁻ ion OR from minus sign on OH ⁻ ion \checkmark	6	The example mark can be awarded as an example of the name of the mechanism given or if the name is wrong can be given as an example of a reasonably correct drawn mechanism If curly half arrows drawn do not give a mark the first time used and then apply ECF H_3C H_3C
	OR Electrophilic addition \checkmark Example of electrophilic addition \checkmark Heterolytic fission \checkmark Curly arrow from C=C bond to Br—Br bond and Dipole and curly arrow associated with Br ₂ \checkmark Correct carbocation ion \checkmark Curly arrow from one lone pair on Br ⁻ ion OR from minus sign on Br ⁻ ion \checkmark		ALLOW mechanisms for other halogenoalkaes $H \xrightarrow{CH_3} H \xrightarrow{H} \xrightarrow{CH_3} CH_3$ $H \xrightarrow{CH_3} H \xrightarrow{H} \xrightarrow{CH_3} CH_3$ $H \xrightarrow{Br \delta^+} \vdots \vdots : \Theta$ ALLOW mechanisms for other halogens and hydrogen halides
	ALLOWElectrophilic substitution \checkmark Example of electrophilic substitution \checkmark Heterolytic fission \checkmark Curly arrow from benzene ring to the electrophile(i.e. $NO_2^+ OR Br^+) \checkmark$ Correct intermediate \checkmark Curly arrow to show loss of hydrogen ion \checkmark	Exam Heter Corre Curly OR fr	DW exphilic addition ✓ uple of nucleophilic addition ✓ olytic fission ✓ ect dipole on carbonyl group ✓ arrow from lone pair on H ⁻ ion om minus sign on H ⁻ to C=O carbon and breaking of C=O bond ✓ arrow from carbonyl oxygen to either H ⁺ or H ₂ O ✓
	Total	15	

F32	F322		Mark Sche	January 2010	
0	Quest	ion	Expected Answers	Marks	Additional Guidance
5	(a)		Cracking ✓	1	ALLOW catalytic or thermal cracking ✓
	(b)	(i)	Acid ✓	1	 ALLOW correct formula if no name given: e.g. H₃PO₄ OR H₂SO₄ OR H⁺ ✓ ALLOW correct name of acid even if an incorrect formula is used
					IGNORE heterogeneous OR homogeneous
		(ii)	The position of equilibrium will shift so as to minimise the effect of any change in conditions \checkmark	1	DO NOT ALLOW 'reaction shifts' The idea of a shift in equilibrium is essential
		(iii)	Low temperature AND high pressure ✓	3	One mark for conditions. This mark is independent of the reasons for conditions
			Low temperature because the (forward) reaction is exothermic \checkmark		One mark for reason for the chosen temperature
			High pressure because there are fewer moles (of gas) on the right hand side \checkmark		One mark for reason for the chosen pressure ALLOW fewer moles of products
		(iv)	(60 atmosphere pressure is a) high pressure may be too expensive OR may cause safety problems ✓	3	
			 (300 °C is sufficiently high) to give a fast rate of reaction ✓ without shifting equilibrium to the left OR compromising equilibrium yield ✓ 		
	(c)		Propene ✓	1	ALLOW prop-1-ene ✓ DO NOT ALLOW prop-2-ene
	(d)	(i)	$-CH_2CHCI- + 2\frac{1}{2}O_2 \longrightarrow 2CO_2 + H_2O + HCI \checkmark$	1	
		(ii)	Alkali OR base OR carbonate ✓	1	ALLOW correct formula of or named carbonate OR alkali OR base Correct name and wrong formula does not score

F322	Mark Sche	January 2010	
Question	Expected Answers	Marks	Additional Guidance
(e)	Any two marks from the following:	2	
	Develop photodegradable polymers ✓		
	Develop biodegradable polymers OR develop compostable polymers ✓		
	Develop techniques for cracking polymers OR develop use as a chemical feedstock ✓		
	Develop ways of making polymers from plant-based substances OR reduce the need to use finite raw materials such as crude oil ✓		
	Designing processes with high atom economy OR reduce waste products during manufacture ✓		
	Develop ways of sorting AND recycling polymers \checkmark		
	Total	14	

F3	22		Mark Sche	eme	January 2010
C	Quest	ion	Expected Answers	Marks	Additional Guidance
6	(a)	(i)	2-Methylpropan-2-ol ✓	1	ALLOW methylpropan-2-ol
	(b)		OH V	1	Formula must be skeletal AND not include any symbol except for OH
	(c)	(i)	Same molecular formula but different structural formulae ✓	1	 ALLOW Same molecular formula but different arrangement of atoms OR Same molecular formula but different structures OR Same molecular formula but different displayed formulae DO NOT ALLOW Same molecular formula but different spatial arrangement of atoms
		(ii)	CH ₃ CH ₂ CH ₂ CH ₂ OH OR (CH ₃) ₂ CHCH ₂ OH ✓ ALLOW OH OR OH	1	ALLOW displayed formula ALLOW sticks (i.e. no H shown bonded to C) ALLOW

F322	Mark Sch	ieme	January 2010
Questio	n Expected Answers	Marks	Additional Guidance
(d)	Has O–H (bonds) OR has hydroxyl (groups) OR has hydroxy (groups) ✓ Forms hydrogen bonds with water (molecules) ✓	2	ALLOW marks from a diagram of hydrogen bonding IGNORE reference to alcohol functional group DO NOT ALLOW 'forms hydrogen bonds'
(e)	CH ₃ COOCH ₂ CH ₂ OOCCH ₃ 1 mark for each ester end of molecule $\checkmark \checkmark$	2	ALLOW displayed formula OR skeletal formula ALLOW sticks CH ₃ COOCH ₂ CH ₂ OH shows one of the two ester groups and scores one mark
(f)	(i) CH_3 CH_3 H CH_3 $C=C$ $C=C$ H CH_3 H H CH_3	2	DO NOT ALLOW H_3C CH_3 H_3C OH $C=C$ CH_3 H_3C H_3C CH_3 $C=C$ H CH_3 i.e. no ECF
	(ii) <i>E/Z</i> ✓	1	ALLOW cis-trans IGNORE geometric
	(iii) CH₃CH₂CH=CH₂ OR but-1-ene ✓	1	If but-1-ene given in part (i), ALLOW but-2-ene OR $CH_3CH=CHCH_3$ i.e. ECF from f(i) DO NOT ALLOW methylpropene: H_3C H H_3C H

F322	Mark Sche	January 2010	
Question	Expected Answers	Marks	Additional Guidance
The mark sThe mark s	nce, candidates may have identified compound F as propano cheme for F = propanone and propanal is shown in the 'Expe cheme for F = propanoic acid is shown in the 'Additional Guid	cted Answe ance' colum	rs' column. ın.
(g)	ne or propanoic acid, then maximum score = 7; but if F is pro Mark scheme for F = propanone and propanal mass spec of E– Remember to check the spectrum	7	Mark scheme for F = propanoic acid mass spec of E– Remember to check the spectrum
	Quality of Written Communication – mass spec gives M^+ or molecular ion of 60 OR mass spec gives parent ion of 60 OR highest m/z (ALLOW m/e) value is 60 \checkmark		QWC – mass spec gives M^+ or molecular ion of 60 OR mass spec gives parent ion of 60 OR highest m/z (OR m/e) value is 60 \checkmark
	m/z = 45 indicates loss of CH ₃ OR $m/z = 45$ indicates presence of CH ₃ CHOH OR CH ₂ CH ₂ OH OR C ₂ H ₅ O \checkmark		m/z = 45 indicates loss of CH ₃ OR $m/z = 45$ indicates presence of CH ₃ CHOH OR CH ₂ CH ₂ OH OR C ₂ H ₅ O \checkmark
	IR of F – Remember to check the spectrum IR shows no broad absorption between 2500 to 3300 cm ⁻¹ so no O—H bond OR no broad absorption between 2500 to 3300 cm ⁻¹ so not a carboxylic acid \checkmark		IR of F– Remember to check the spectrum IR shows (broad) absorption somewhere between 3500 and 2500 cm ⁻¹ suggests carboxylic acid OR O–H bond •
	IR shows absorption at 1700 cm ⁻¹ due to a C=O bond OR absorption at 1700 cm ⁻¹ indicates a ketone OR aldehyde present \checkmark		IR shows absorption at 1700 cm ⁻¹ due to C=O \mathbf{OR} absorption at 1700 cm ⁻¹ indicates a carboxylic acid
	Identification and equation F is CH ₃ COCH ₃ OR propanone ✓		Identification and equation F is CH ₃ CH ₂ COOH OR propanoic acid ✓
	E is CH ₃ CHOHCH ₃ OR propan-2-ol ✓		E is CH ₃ CH ₂ CH ₂ OH OR propan-1-ol ✓
	$CH_{3}CHOHCH_{3} + [O] \longrightarrow CH_{3}COCH_{3} + H_{2}O \checkmark$	-	$CH_{3}CH_{2}CH_{2}OH + 2[O] \longrightarrow CH_{3}CH_{2}COOH + H_{2}O\checkmark$
	If F has been incorrectly identified as propanal, mark identification and equation as ECF, so max = 2 ALLOW E is $CH_3CH_2CH_2OH \checkmark$		
	ALLOW : $CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark$		
	Total	19	

F322 Extra guidance for marking of Q6(g)

If **E** has **not** been identified **OR** if **F** has been identified as a **ketone or aldehyde**, use the **left-hand** mark scheme

If **F** has been identified as a **carboxylic acid**, use the **right-hand** mark scheme

Mass spec

These two marking points stand as independent marks whichever compounds have been identified.

The positive sign for fragment ions is not required. **IGNORE** negative charge. The mass spec may well be on the actual spectrum.

IR mark

These stand as **independent** marks whichever compounds have been identified. The IR analysis may well be on the actual spectrum.

Identification marks

If both structure and name are given they must **both** be correct but allow 'propanol' drawn with the correct structure because the position number of the –OH has been clearly identified

ALLOW ECF for identification of F e.g. if E is pentan-2-ol × then an answer of pentan-2-one for F will be given a mark ✓ as ECF

ALLOW identification marks for E and F from equation

Equation mark

ALLOW ECF for any correct equation showing the oxidation of **any** alcohol to the appropriate product. **ALLOW** molecular formulae in equations, i.e. $C_3H_7OH + [O] \rightarrow C_2H_5CHO + H_2O \checkmark$; $C_3H_8O + [O] \rightarrow C_3H_6O + H_2O \checkmark$; $C_3H_7OH + [O] \rightarrow C_2H_5COH + H_2O \checkmark$

F322	2		Ма	rk Scheme	January 2010
Q	Question		Expected Answers	Marks	Additional Guidance
7	(a)	(i)	Infrared (radiation absorbed) ✓ by (C–H) bond vibration ✓	2	ALLOW bond stretching OR bond bending DO NOT ALLOW molecules vibrating
		(ii)	Greater concentration of carbon dioxide OR more carbon dioxide is being made ✓	1	 ALLOW carbon dioxide is the main contributor to global warming DO NOT ALLOW any response that states that CO₂ causes ozone depletion ALLOW C=O bonds absorb IR more readily than C–H bonds ALLOW carbon dioxide has a greater greenhouse effect

F322

Question		ion	Expected Answers	Marks	Additional Guidance		
7	(b)		Any five from the following: Developing carbon capture AND storage ✓	5	carbon, capture AND storage required ALLOW CCS		
			One example of CCS \checkmark		Examples of CCS		
			Second example of CCS ✓		deep in the oceans OR on the sea-bed \checkmark DO NOT ALLOW dissolve CO ₂ in the sea OR stored in ocean		
					storage in geological formations OR piped into disused or partially filled oil wells or porous rocks OR under the sea-bed ✓		
			Provide evidence to governments OR international conferences (e.g. Kyoto) OR reports to United Nations etc ✓		by reaction with metal oxides OR reaction to form (solid) carbonates OR stored as a carbonate OR equation to show formation of metal carbonate ✓		
			Educating society OR writing in journals OR producing documentaries OR writing books OR making posters ✓		IGNORE mineral storage		
			Monitoring atmospheric changes ✓				
			Develop alternative energy sources \checkmark One example of an alternative energy source e.g. develop fuel cells OR developing solar power OR fuels that do not produce CO ₂ \checkmark		ALLOW idea of biofuels only if linked to carbon-neutralit		
			(Develop) more efficient engines for transport OR lean burn engines OR hybrid engines OR electric cars ✓		IGNORE reforestation IGNORE reference to CFCs		
			Find uses for carbon dioxide OR named use: e.g. dry cleaning OR making decaffeinated coffee OR blowing agent OR fizzy drinks, etc ✓		DO NOT ALLOW use less carbon dioxide		

Question	Expected Answers	Marks	Additional Guidance
(c)	Any two from the following:	2	
	 There are times when CO₂ has a high concentration and the temperature is also high OR There are times when CO₂ has a low concentration and the temperature is low ✓ It is impossible to measure with certainty the average temperature years ago ✓ There are other gases that may cause a greenhouse effect OR There are other factors that may cause a greenhouse effect ✓ There are very few anomalous results ✓ 		 ALLOW a (positive) correlation between temperature and carbon dioxide concentration but DO NOT ALLOW just 'a correlation' IGNORE 'graphs are the same shape' IGNORE 'graphs are similar'
	Total	10	

Grade Thresholds

Advanced GCE Chemistry A (H034/H434) January 2010 Examination Series

Unit Threshold Marks

Unit		Maximum Mark	а	b	С	d	е	u
F321	Raw	60	46	40	35	30	25	0
	UMS	90	72	63	54	45	36	0
F322	Raw	100	77	68	59	51	43	0
	UMS	150	120	105	90	75	60	0
F324	Raw	60	43	38	33	29	25	0
	UMS	90	72	63	54	45	36	0

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	A	В	С	D	E	U
H034	300	240	210	180	150	120	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	В	С	D	E	U	Total Number of Candidates
H034	12.9	37.5	62.7	83.1	96.2	100	1415

1415 candidates aggregated this series.

For a description of how UMS marks are calculated see: http://www.ocr.org.uk/learners/ums/index.html

Statistics are correct at the time of publication.