Oxford Cambridge and RSA Examinations
Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS
INTRODUCTION TO ADVANCED MATHEMATICS, C1 $\mathbf{4 7 5 1}$

MARK SCHEME

Qu	Answer	Mark	Comment
Section A			
1(i)		B1 [1]	
1(ii)	$x=2$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	
1(iii)	$x=2$	B1 [1]	
2	$\begin{aligned} & a x^{2}+x^{2}=d-b \\ & x^{2}=\frac{d-b}{a+1} \\ & x= \pm \sqrt{\frac{d-b}{a+1}} \end{aligned}$	M1 A1 A1 [3]	cao including \pm
3	$\begin{aligned} & 2 x^{2}-5 x-3=0 \\ & (2 x+1)(x-3)=0 \\ & \Rightarrow x=-0.5 \text { or } 3 \end{aligned}$	B1 M1 A1 [3]	May be implied cao
4	$\begin{aligned} & { }^{5} \mathrm{C}_{3} \times(-2)^{3} \\ & =-80 \\ & \text { Or use of Pascal's triangle } \end{aligned}$	M1 B1 A1 [3]	Binomial coefficient cao
5(i) 5(ii)	Good reasons: The model curve passes through $(0,0)$ (or $(4,0)$) The model curve passes through $(2,2)$ The model curve is flat in the middle The model curve is symmetrical Reasons why not: The point $(1,1.5)$ is on the model curve but below the bridge	B1,B1 B1	Any two good reasons
6	Find equation of l using $\begin{aligned} & y-y_{1}=m\left(x-x_{1}\right) \\ & y=3 x+5 \end{aligned}$ Substituting $x=-100$ in line l gives $(-100,-295)$ $(-100,-294)$ is above l	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	

Qu	Answer	Mark	Comment
Section A (continued)			
7	Gradient of $\mathrm{AB}=$ gradient of $\mathrm{DC}=1 / 2$ Gradient of $\mathrm{BC}=$ gradient of $\mathrm{AD}=1$ $\therefore \mathrm{ABCD}$ is a parallelogram $A B=\sqrt{ } 20, B C=\sqrt{ } 18 \text { so } A B \neq B C$ $\therefore \mathrm{ADCD}$ is not a rhombus	M1 E1 M1 E1 [4]	
8	$\begin{aligned} & (x+3)^{2}=0 \\ & p=9 \\ & x=-3 \end{aligned}$	M1,A1 B1 B1 [4]	Or use of discriminant
$\begin{aligned} & 9(\mathbf{i}) \\ & 9(\text { ii }) \end{aligned}$	1 $\begin{aligned} & \frac{\sqrt{2}}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1}=2-\sqrt{2} \\ & a=2, b=-1 \end{aligned}$	B1 [1] M1,A1 A1 [3]	cao
10	$\begin{aligned} & x^{2}-4 x+1=2 x+2 \\ & x^{2}-6 x-1=0 \\ & x=\frac{6 \pm \sqrt{36+4}}{2} \\ & x=3+\sqrt{10} \text { or } 3-\sqrt{10} \end{aligned}$ Substitute in $y=2 x+2$ $y=8+2 \sqrt{10}$ or $y=8-2 \sqrt{10}$ respectively	M1 M1 A1 M1 A1 [5]	

Section A Total: 36

Section B			B1
$\mathbf{1 1 (i)}$	Mid point of AB is (7, 6) Perpendicular bisector: $x=7$	B1	
Mid point of OA is $(1,3)$ Gradient of OA is 3 Gradient of perpendicular is $-1 / 3$ $\Rightarrow y=-\frac{1}{3} x+\frac{10}{3}$ Intersects $x=7$ at $(7,1)$	M1		

Qu	Answer	Mark	Comment
Section B (continued)			
11(ii)	Show that $\mathrm{CO}=\mathrm{CA}=\mathrm{CB}$ All are $\sqrt{50}$ $(x-7)^{2}+(y-1)^{2}=50$ Cuts y-axis at $(0,2)$	$\begin{array}{r} \text { M1 } \\ \text { A1 } \\ \text { B1,B1 } \\ \text { M1,A1 } \\ {[6]} \end{array}$	Radius, centre
12(i)	Show $\mathrm{f}(1)=0$	$\begin{aligned} & \mathrm{B} 1 \\ & {[1]} \end{aligned}$	
12(ii)	$\mathrm{f}(x)=(x-1)(x-4)(x+2)$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Take out ($x-1$) Factorise quotient
	Shape of sketch. Points of intersection with x-axis. Point of intersection with y-axis.	$\begin{gathered} \text { B1,B1 } \\ \text { B1 } \\ \text { B1 } \\ \quad[7] \end{gathered}$	
12(iii)	Recognition that this is $y=-\mathrm{f}(x)$ Curve consistent with answer to $\mathbf{1 2 (i i)}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	May be implied
12(iv)	Their curve moved 2 to left Points of intersection with x-axis	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$ [2]	
13(i)	$\begin{aligned} & (x-3)^{2}+1 \\ & a=-3 \text { and } b=1 \\ & (x-3)^{2} \geq 0 \text { for all } x \text { and }+1>0 \end{aligned}$	B1,B1 M1,E1	
13(ii)	U-shaped curve Line of symmetry $x=3$ Lowest point (3,1)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$ [3]	
13(iii)	Correct straight line No solution/no real roots The line and the curve do not intersect	B1 B1 B1 [3]	
13(iv)	$2<x<4$	M1 A1 [2]	Solving $x^{2}-6 x+8=0$ or verifying roots read from graph
Section B Total: $\mathbf{3 6}$Total: 72			

AO	Range	Total	Question Number												
			1	2	3	4	5	6	7	8	9	10	11	12	13
1	28-36	34	3	1	-	2	-	2	-	1	3	3	6	7	6
2	28-36	33	-	2	3	1	-	2	3	3	1	2	5	5	6
3	0-8	3	-	-	-	-	3	-	-	-	-	-	-	-	-
4	0-8	2	-	-	-	-	-	-	1	-	-	-	1	-	-
5	0-4	0	-	-	-	-	-	-	-	-	-	-	-	-	-
	Totals	72	3	3	3	3	3	4	4	4	4	5	12	12	12

