Oxford Cambridge and RSA Examinations

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS
INTRODUCTION TO ADVANCED MATHEMATICS, C1

Specimen Paper

Additional materials: Answer booklet
Graph paper
MEI Examination Formulae and Tables (MF 2)
TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, Centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are not permitted to use a calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is 72 .

Section A (36 marks)

1 Solve the equations:
(i) $x^{\frac{1}{2}}=9$
(ii) $\quad x^{-3}=\frac{1}{8}$
(iii) $\quad\left(x^{10}\right)^{\frac{1}{2}}=32$

2 Make x the subject of the equation $a x^{2}+b=-x^{2}+d$.

3 Solve the equation $2 x^{2}-5 x=3$.

4 Find the term in x^{3} in the binomial expansion of $(1-2 x)^{5}$.

5 The diagram shows a bridge.
The units are metres.

It is suggested that the curved underside of the bridge can be modelled by the curve $y=\frac{1}{2} x(4-x)$ for $0 \leq x \leq 4$.
(i) Give two different reasons why this is a good model.
(ii) Give also one reason why it is not a perfect model.
$6 \quad$ A line l passes through the point $(-1,2)$ and has gradient 3 .
Determine whether the point $(-100,-294)$ lies above the line l, on it or below it.

7 The coordinates of points A, B, C and D are $(-2,-1),(2,1),(5,4)$ and $(1,2)$ respectively. Prove that ABCD is a parallelogram but not a rhombus.

8 The quadratic equation $x^{2}+6 x+p=0$ has equal roots.
State the value of p and hence find x.

9 (i) Simplify $(\sqrt{2}+1)(\sqrt{2}-1)$.
(ii) Express $\frac{\sqrt{2}}{\sqrt{2}+1}$ in the form $a+b \sqrt{2}$, where a and b are integers to be determined.

10 Find the coordinates of the points of intersection of the line $y=2 x+2$ and the curve $y=x^{2}-4 x+1$, giving your answers as surds.

Section B (36 marks)

11

Fig. 1

Fig. 1 shows a triangle with vertices $O(0,0), A(2,6)$ and $B(12,6)$. The perpendicular bisectors of OA and AB meet at C .
(i) Write down the equation of the perpendicular bisector of AB .

Find the equation of the perpendicular bisector of OA.
Hence show that the coordinates of C are $(7,1)$.
(ii) Show that the point C is the centre of the circle which passes through O, A and B . Find the equation of this circle.
Find the y-coordinate of the point other than O where the circle cuts the y-axis.

12 In this question, $\mathrm{f}(x)=x^{3}-3 x^{2}-6 x+8$.
(i) Show that $x-1$ is a factor of $\mathrm{f}(x)$.
(ii) Factorise $\mathrm{f}(x)$ completely and hence sketch the graph of $y=\mathrm{f}(x)$.
(iii) On the same axes sketch the graph of $y=-x^{3}+3 x^{2}+6 x-8$.
(iv) Sketch the graph of $y=\mathrm{f}(x+2)$, marking the x-coordinates of the points where it crosses the x-axis. You need not calculate the y-intercept.

13 (i) Express $x^{2}-6 x+10$ in the form $(x+a)^{2}+b$ where a and b are constants to be determined. Hence show that the value of $x^{2}-6 x+10$ is positive for all values of x.
(ii) Sketch the graph of $y=x^{2}-6 x+10$.

Mark the axis of symmetry and give its equation.
State the co-ordinates of the lowest point of the curve.
(iii) On the same axes sketch the graph of $y=x-3$.

State, with reasons, what your graph tells you about the solution of the equation

$$
\begin{equation*}
x^{2}-6 x+10=x-3 . \tag{3}
\end{equation*}
$$

(iv) Solve the inequality $x^{2}-6 x+10<2$.

