

GCE

Mathematics

Advanced GCE

Unit 4732: Probability and Statistics 1

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding Penalise over-rounding only once in paper.

		over-rounding only once in paper.	1	Taria	T
Description Poor/no/little/weak/not strong corn' n or rel'nship or link between income & distance of the d	1ia	5 or -10		M1 for correct subst in any correct S formula	
b Poor/no/little/weak/not strong corr'n or rel'nship or link between income & distance oe B1 1 In context, ie any comment on income & distance In context, ie any comment on income & distance No rel'nship. Low income doesn't cause low distance No rel'nship. Low income doesn't cause low distance Nor "Not proportional" Nor recovery of this mark in (ii) relose to 0, or small, or poor corr'n oe or re=-0.122 Unreliable Unreliable B1 dep 2 or Weak/no corr'n or poor rel'nship oe or No evidence to link sales & distance B1 dep 2 or "less reliable" or "not that reliable" "The data is unreliable" Must have correct reason or slight neg/weak corr'n (oe) between income ed distance, lower income No rel'nship. Low income doesn't cause low distance Nor "Nor "Nor proportional" Nor recovery of this mark in (ii) Ignore other NOT "Little effect" NOT "Not much effect" or because small sample Ignore other Allow: "Unreliable because pts do not fit a st line" "Unreliable because pts are scattered" "Unreliable because r smaller than (-)0.7" NOT "Unreliable because r smaller than (-)0.7" NOT "Unreliable because extrapolated": B01 but "Unreliable because extrapolated and poor		$\sqrt{\frac{(14323-\frac{251^2}{5})(855-\frac{65^2}{5})}{\sqrt{1722.8\times10}}}$ or $\sqrt{\frac{1722.8\times10}{1722.8\times10}}$	M2	M2 for correct subst'n in any correct r formula	or $\frac{-80}{\sqrt{8614 \times 50}}$
rel'nship or link between income & distance oe B1 1 B1 1 In context, ie <u>any</u> comment on income & lin context. In context, ie <u>any</u> comment on income & lin context. In context, ie <u>any</u> comment on income & lin context. In context, ie <u>any</u> comment on income & lin context. In context, ie <u>any</u> comment on income & lin context. In context, ie <u>any</u> comment on income & lin context. In context, ie <u>any</u> comment on income & lin context. In context, ie <u>any</u> comment on income & lin context. In context, ie <u>any</u> comment on income & lin context. In context, ie <u>any</u> comment on income & lin context. In context, ie <u>any</u> comment on income & lin context. In context, ie <u>any</u> comment on income & lin context. In context, ie <u>any</u> comment on income & lin context. In context, ie <u>any</u> comment on income & lin context. In context, ie <u>any</u> comment on income & lin context. In context, ie <u>any</u> comment on income & lin context. In context, ie <u>any</u> comment on income & lin context. In context, ie <u>any</u> context in context. In context is any context in co		= -0.1219	A1 3	Must see at least 4 sfs	Allow –0.1218
ii r close to 0, or small, or poor corr'n oe or $r = -0.122$ B1or Weak/no corr'n or poor rel'nship oe or No evidence to link sales & distanceor because small sample Ignore otherUnreliableB1dep 2Condone "innacurate" or "incorrect" or "less reliable" or "not that reliable" "Unreliable because pts do not fit a st line" "Unreliable because pts are scattered" "Unreliable because not strong neg" "Unreliable because r not close to -1" "Unreliable because r mot close to -1" "Unreliable because extrapolated": B0I but "Unreliable because extrapolated and poor in the poor rel'nship oe or because small sample Ignore other	b	rel'nship or link between income &	B1 1	& distance In context, ie <u>any</u> comment on income &	Poor neg corr'n, so higher distance, lower income No rel'nship. Low income doesn't cause low distance NOT "Not proportional" NOT "negative corr'n"
or $r = -0.122$ Unreliable B1dep Condone "innacurate" or "incorrect" or "less reliable" or "not that reliable" "Unreliable because pts do not fit a st line" "Unreliable because pts are scattered" "Unreliable because not strong neg" "Unreliable because r not close to -1" "Unreliable because r smaller than ($-$)0.7" NOT "Unreliable because extrapolated": B0I but "Unreliable because extrapolated and poor	С	No effect or -0.122 oe	B1 1	eg "Nothing" or "None" oe	Ignore other
or "less reliable" or "not that reliable" "The data is unreliable" Must have correct reason "Unreliable because pts are scattered" "Unreliable because not strong neg" "Unreliable because r not close to -1" "Unreliable because r smaller than (–)0.7" NOT "Unreliable because extrapolated": Boll but "Unreliable because extrapolated and poor	ii		B1		*
but "Unreliable because extrapolated and poor		Unreliable	B1dep 2	or "less reliable" or "not that reliable" "The data is unreliable"	"Unreliable because pts do not fit a st line" "Unreliable because pts are scattered" "Unreliable because not strong neg" "Unreliable because <i>r</i> not close to -1"
					NOT "Unreliable because extrapolated": B0B0 but "Unreliable because extrapolated and poor corr'n": B1B1
Total 7	Total		7		

2	Attempt ranks	M1	Ignore labels of rows or columns	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A1 M1	No ranks seen, $d = (0), \pm 1, \pm 1, \pm 2$, or $d^2 = (0), 1, 1, 4$ any order: M1A1 NOT $(\Sigma d)^2$	No wking, $\Sigma d^2 = 6$: M1A1M1 No wking, $\Sigma d^2 = \text{eg } 14$: M0A0M0, but can gain 3^{rd} M1
	$1 - \frac{6\Sigma d^2}{4(4^2 - 1)}$	M1	1101 (24)	No wking, ans $\frac{2}{5}$: Full mks
	$=\frac{2}{5}$ oe	A1 5		Allow both sets of ranks reversed
				NB incorrect method: 2 3 4 1 2 1 3 4 OR $d = (0), \pm 2, \pm 1, \pm 3$ any order OR $d^2 = (0), 4, 1, 9$ any order (leading to $\Sigma d^2 = 14$ and $r_s = -\frac{2}{5}$): M0A0M1M1A0
Total		5		
3ia	$(1 - 0.5565)$ or $12 \times 0.85^{11} \times (1 - 0.85) + 0.85^{12}$	M1	or $1 - ((1-0.85)^{12}^{12}C_{10} \times 0.85^{10}(1-0.85)^{2})$ ie $1 - (all 11 correct binomial terms)$	or 1 – 0.557 NB 1 – 0.4435 (oe): M0A0
	= 0.4435 or 0.443 or 0.444 (3 sf)	A1 2		11.5 (00). NIOTO
b	$0.5565 - 0.2642$ or ${}^{12}C_{10}(1 - 0.85)^2(0.85)^{10}$ = 0.2923 or 0.2924 or 0.292 (3 sf)	M1 A1 2		or 0.557 – 0.264
С	$12 \times 0.85 \times (1-0.85)$ = 1.53 oe	M1 A1 2		
ii	$(\frac{3}{4})^2$ AND $\frac{3}{4} \times \frac{1}{4}$ seen (possibly \times 2)	M1	eg $(\frac{3}{4})^2 + \frac{3}{4} \times \frac{1}{4}$ or $2 \times (\frac{3}{4})^2 + 2 \times \frac{3}{4} \times \frac{1}{4}$ or $0.5625 + 0.1875$ or $0.5625 + 0.375$	or $\frac{9}{16}$ and $\frac{3}{16}$ or $\frac{9}{16}$ and $\frac{3}{8}$ eg in table or list
	$(\frac{3}{4})^2 \times 2 \times \frac{3}{4} \times \frac{1}{4}$ oe or $\frac{27}{128}$ or 0.211	M1	or eg 0.5625×0.375	Allow even if further incorrect wking
	$2 \times \left(\frac{3}{4}\right)^2 \times 2 \times \frac{3}{4} \times \frac{1}{4}$ oe	M1	Fully correct method	
	$=\frac{27}{64}$ or 0.422 (3 sfs)	A1 4		Ans 0.211: check wking but probably gets M1M1M0A0
				Use of 0.85 instead of $\frac{1}{4}$: MR max M1M1M1A0
Total		10		

4i	Method is either: Just $4 \div 3$ or $\frac{4}{3}$					
	or: Use of ratio of correct frequencies AND ratio of widths (correct or 4 and 2)					
4i	$5.6 \times \frac{4}{28} \times \frac{5}{3}$ or $0.8 \times \frac{5}{3}$ or $(5.6 \div \frac{28}{5}) \times \frac{4}{3}$ or $\frac{4}{3}$ or $4 \div 3$ oe	M2	M1 for $5.6 \times \frac{4}{28} \times \frac{4}{2}$ or $0.8 \times \frac{4}{2}$ or $(5.6 \div \frac{28}{4}) \times \frac{4}{2}$ or 0.8×2 oe (= 1.6)	Correct calc'n using 5.6, 28, 4, 5, 3 oe: M2 Correct calc'n using 5.6, 28, 4, 4, 2 oe: M1		
	of $(3.0 \div \frac{4}{5}) \times \frac{3}{3}$ of $\frac{3}{3}$ of $\frac{4}{3}$ of $\frac{4}{3}$ or $\frac{4}{3}$	A1 3	No wking, ans 1.3: M2A0 Ans 1.6: Check wking but probably M1M0A0	ie fully correct method: M2 or: incorrect class widths, otherwise correct method: M1 $\frac{4}{3} \text{ correctly obtained (or no wking) then further incorrect:}$ M1M0A0		
				Use of ratio of widths OR freqs but not both: M0 eg $5.6 \times \frac{4}{28}$ (= 0.8) or $5.6 \times \frac{3}{5}$ (= 3.36): M0 $\frac{4}{2} = 2$: M0M0A0		
ii	25 or 26 or 25.5	B1	or 25 & 26	May be implied, eg by 21 or 22 or 21.5		
	Med is 21^{st} (or 22^{nd} or 21.5^{th}) in 31-35 class or "25 – 4" Can be implied by calc'n	B1	or med in last ≈ 7 in class or $33 \approx 14^{th}$ in class or $33 \approx 18^{th}$ in whole set Can be implied by diagram	Calc'ns need not be correct but need to contain relevant figures for gaining B1B1		
	Med > 33 or "more than"	B1 3	indep	The "≈" sign means ± 2		
				$\frac{Alternative\ Method:}{33\approx18^{th}\ value} \qquad \qquad B1$ More values above 33 than below on B1 Med > 33 B1 Ignore comment on skew $NB\ Use\ EITHER\ the\ main\ method\ OR\ the$ $\frac{Alternative\ Method}{Alternative\ Method}\ (above),\ not\ a\ mixture\ of\ the$ two. Choose the method that gives most marks.		

iii	≥ 3 mid-pts attempted	M1	seen or implied	Not nec'y correct values (29, 33, 40.5, 53)
	$\Sigma fx \div 50 \text{ attempted} \qquad (= \frac{1819}{50})$ = 36.38 or 36.4 (3 sf)	M1 A1	≥ 3 terms. or 36 with correct working	Allow on boundaries. Not class widths
	Σfx^2 attempted (= 68055.5)	M1	\geq 3 terms.	Allow on boundaries. Not class widths (3364, 30492, 22963.5, 11236)
	$\sqrt{\frac{68055.5}{50} - (\frac{1819}{50})^2} \text{or } \sqrt{1361.11 - 36.38^2}$ $(= \sqrt{37.6056})$	M1	completely correct method except midpts & ft their mean, dep not $\sqrt{(\text{neg})}$	Allow class widths for this mark only NB mark is not just for "– mean ² ", unlike q5(iii)
	= 6.13 (3 sfs)	A1 6		$\Sigma(fx)^2$: M0M0A0 If no wking for Σfx^2 , check using their x and f
	Alt for variance: $\Sigma f(x - \bar{x})^2 = 1880.28$ M1 $\sqrt{\frac{1880.28}{50}}$ M1 = 6.13 (3 sf) A1			If no wking or unclear wking: full mks for each correct ans for incorrect ans: $35.8 \le \mu \le 36.9$ M0M1A0 $6.0 \le \text{sd} \le 6.25$ M1M0A0
iv	(a) Decrease (b) Increase (c) Same (d) Same	B1B1 B1B1 4	Ignore other, eg "slightly" or "probably"	Ignore any comments or reasons, even if incorrect
Total		16		
5	If done with replacement, no marks in any pa	rt of this g	~	,
5i	All correct probs correctly placed, matching labels, if any	B2 2	B1 for 4 correct probs anywhere	Allow B2 with missing labels but only if probs consistently placed, ie R above B throughout
ii	$\frac{4}{10} \times \frac{6}{9} + \frac{6}{10} \times \frac{4}{9} \times \frac{5}{8} + \frac{6}{10} \times \frac{5}{9} \times \frac{4}{8}$ or $\frac{4}{15} + \frac{1}{6} + \frac{1}{6}$		B1: two of these products (or their results) added (not multiplied)	
	$(=\frac{3}{5} \mathbf{AG})$	B2 2	or $1 - (\frac{6}{10} \times \frac{5}{9} \times \frac{4}{8} + \frac{6}{10} \times \frac{4}{9} \times \frac{3}{8} + \frac{4}{10} \times \frac{3}{9})$ or $1 - (\frac{1}{6} + \frac{1}{10} + \frac{2}{15})$	B1: 1 – two of these products (or results) added (not multiplied) NB incorrect methods can lead to correct ans AG so no wking no mks
				No ft from tree in (i)

iii	$\sum xp \text{ attempted}$ = $\frac{16}{15}$ oe or 1.07 (3 sfs)	M1 A1	Both non-zero terms	\div 3 etc or $\frac{1}{\sum xp}$: M0	
	$\Sigma x^2 p$ attempted $(=\frac{23}{15} \text{ or } 1.53)$	M1	Both non-zero terms	\div 3 etc: or $\frac{1}{\Sigma x^2 n}$: M0	Not $\sum xp^2$
	- " <u>16</u> "2	M1	indep but dep +ve result	· r	NB easier to gain than equiv mark in qu 4(iii)
	$=\frac{89}{225}$ oe or 0.395 or 0.396 (3 sfs)	A1 5	Ans 0.388: check wking from $\mu = 1.07$; prematur		not 0.395, but check for dot over 5 for recurring
	Alt for $Var(X)$: $\Sigma(x-\bar{x})^2p$ M2		$\frac{1}{6} \times \frac{16}{15}^{2} + \frac{3}{5} \times \frac{1}{15}^{2} + \frac{3}{15}$ all correct M2, 2 terms of	30 13	
Total		9			
6ia	5040	B1 1		[-[
b	6! or 5!×6 or 720	M1		$^{1}/_{7}\times^{1}/_{6}$ M1*	NOT 6! in denom
	÷ 7! or ÷ "5040" or 1440 or (5! or 6!) × 2	M1	Any \div 7! or "5040" but NOT any \times 2	\times 6 or \times 2 M1 dep*	eg $^{6!}/_{5040}$ or $^{1}/_{7}$ or 0.143 or $^{1}/_{21}$ (3 sfs): M1M1A0
	$= \frac{2}{7}$ oe or 0.286 (3 sf)	A1 3			
iia	3! × 4! alone or 144	M1	$\frac{1}{4} \frac{4}{7} \times \frac{3}{6} \times \frac{3}{5} \times \frac{2}{4} \times \frac{2}{3} \times \frac{1}{2}$ oe	or 7 <i>C</i> 3or7 <i>C</i> 4	Not $3! \times 4! \times$ (eg not $3! \times 4! \times 5$) not $\frac{1}{3! \times 4!}$, not $\frac{1}{144}$
	(÷ 7! or "5040")				31×4! , not 144
	$= \frac{1}{35}$ oe or 0.0286 (3sf)	A1 2			NB no mark for ÷ 7! or "5040" in this part
b	5 seen or 5! seen	M1			or GGGBBBB, BGGGBBB, BBGGGBB, BBBBGGGB, BBBBGGGG
	$3! \times 4! \times 5$ or $5! \times 3!$ or 720 or 5×144	M1	or $5 \times \frac{3}{7} \times \frac{2}{6} \times \frac{1}{5} (\times \frac{4}{4} \times \frac{3}{4})$	$(3 \times^2 /_2)$ oe: M2	
			or $5 \times \frac{1}{7C3 \text{or } 7C4}$:	M2	NB no mark for ÷ 7! or "5040" in this part
	(:71 "5040")		or 5 × "(iia)":	M2	
	$(\div 7! \text{ or "5040"})$ = $^{1}/_{7} \text{ oe or 0.143 (3 sf)}$	A1 3			
Total		9			

7i	x	B1 1	Ignore explanations. "Neither" or "Both": B0			
ii	Diag showing vertical differences only	B1	Allow description instead of diag: "Distances from pts to line // to y-axis" oe	Allow \geq one line, from a point to the line		
	State that sum of squares of these is min oe	B1 2	dep vert or horiz lines (not both) drawn or described	Must have Min, Squares, Distances & Sum		
iii		B1	Not approx –1	Allow eg:		
	Ranks opposite or reversed	B1dep	As x increases, y decreases	-1 because neg corr'n so ranks must be reversed		
	or <u>perfect</u> neg corr'n between <u>ranks</u> oe	2		Ignore other NOT neg corr'n or strong neg rel'nship oe NOT comment about "disagreement" or "agreement"		
iv	"Negative"		eg "Strong neg"	Any implication of Negative, except		
	(2)	D1 1	or any negative value > -1	NOT "Negative gradient" and		
T-4-1	or "Not –1"	B1 1	or "Close to –1"	NOT " -1 " given as the value of r		
Total		0				
8	Incorrect p (eg "cubical die means 18 sides h	ence $p = \frac{1}{1}$	\frac{1}{8}\)"): can gain all B & M marks.			
8i	$\frac{25}{216}$ oe or 0.116 (3 sfs)	B1 1				
ii	$({}^{5}/_{6})^{7} \times {}^{1}/_{6}$ alone	M2	M1 for $({}^{5}/_{6})^{8} \times {}^{1}/_{6}$ alone			
	$= 0.0465 (3 \text{ sfs}) \text{ or } \frac{78125}{1679616}$	A1 3				
iii	$({}^{5}/_{6})^{8}$ oe alone = 0.233 (3 sfs) or $\frac{390625}{1679616}$	M1 A1 2	$1 - P(X \le 8)$, with exactly 8 correct terms	NOT $1 - (\frac{5}{6})^8$, NOT $(\frac{5}{6})^8 \times$		
iv	NB If more than 5 products are added (eg $P(1 \le X \le 12)$: no marks					
	$(\frac{5}{6})^{9} \times \frac{1}{6} + (\frac{5}{6})^{10} \times \frac{1}{6} + (\frac{5}{6})^{11} \times \frac{1}{6} + (\frac{5}{6})^{12} \times \frac{1}{6}$ $(= 0.0323 + 0.0268 + 0.0224 + 0.0187)$	M3	M3 for all correct	$(5/_6)^9 - (5/_6)^{13}$ or $1 - (5/_6)^{13} - [1 - (5/_6)^9]$ M3		
			or M2 for 3 of these added or these 4 plus 1 extra or 0.0817 or 0.0680 or 0.139 or 0.116	or $\binom{5}{6}^{8,9 \text{ or } 10} - \binom{5}{6}^{12, 13 \text{ or } 14}$ or $1 - \binom{5}{6}^{12, 13 \text{ or } 14} - \left[(1 - \binom{5}{6})^{8, 9 \text{ or } 10} \right]$ M2		
	0.400 (2.4)		or M1 for ≥ 1 of these terms or values seen; ignore incorrect	or $\pm [(\frac{5}{6})^9 - (1 - (\frac{5}{6})^{13})]$ or $\pm [1 - (\frac{5}{6})^9 - (\frac{5}{6})^{13}]$ M1		
	= 0.100 (3 sfs)	A1 4	Allow 0.1 with wking			
Total		10				

Total 72 marks

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

