Paper 1 (4CH1/1C and 4SDO/1C)

| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 ( a )}$ | Nucleus | $\mathbf{1}$ |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 ( b )}$ | Proton | $\mathbf{1}$ |


| Question <br> number | Answer | Additional guidance | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 ( c )}$ | Equal numbers of protons and <br> electrons | accept equal numbers of <br> positive and negative <br> particles/charges | $\mathbf{1}$ |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 ( d )}$ | 5 | $\mathbf{1}$ |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 ( e )}$ | Lithium | $\mathbf{1}$ |

Total for Question 1 = 5 marks

| Question number | Answer | Additional guidance | Mark |
| :---: | :---: | :---: | :---: |
| 2(a)(i) | An explanation that makes reference to the following two points: <br> - boxes 1 and 2 (1) <br> - because they both have only one type of atom/molecule (1) | accept other indications, e.g. only He and only H-H accept species in place of atom/molecule <br> second mark can be awarded if only box 1 or box 2 identified | 2 |


| Question <br> number | Answer | Additional guidance | Mark |
| :--- | :--- | :--- | :--- |
| 2(a)(ii) | An explanation that makes reference <br> to the following two points: <br> - boxes 3 and 5 (1) <br> because they both have two <br> different molecules (1) | second mark can be <br> awarded if only box 3 or <br> box 5 identified |  |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{2 ( b ) ( i )}$ | Simple distillation | $\mathbf{1}$ |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| 2(b)(ii) | Chromatography | $\mathbf{1}$ |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| 2(b)(iii) | Crystallisation | $\mathbf{1}$ |

Total for Question 2 = 7 marks

| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| 3(a) | Reversible arrow | $\mathbf{1}$ |


| Question <br> number | Answer | Additional guidance | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3 ( b ) ( i )}$ | • (X) ammonium chloride (1) <br> $\bullet$(Y) ammonia and hydrogen <br> chloride (1) | accept formulae |  |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| 3(b)(ii) | D (subliming) | $\mathbf{1}$ |


| Question <br> number | Answer | Additional guidance | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3 ( c )}$ | An explanation that makes reference <br> to the following three points: <br> - $\quad$ C (1) <br> because ammonia molecules have <br> lower mass or smaller $M_{r}$ (hence <br> travel faster) (1) <br> and so travel further in the same <br> time (1) | accept reverse arguments <br> for hydrogen chloride |  |


| Question <br> number | Answer | Additional guidance | Mark |
| :--- | :--- | :--- | :--- |
| 4(a) | $\bullet 35(1)$ | final answer consequential <br> on syringe readings |  |


| Question number | Answer | Additional guidance | Mark |
| :---: | :---: | :---: | :---: |
| 4(b) | - Calculation of volume of oxygen used <br> - Calculation of original volume of air <br> - Calculation of percentage <br> Example calculation: $\begin{aligned} & 80-43=37\left(\mathrm{~cm}^{3}\right)(1) \\ & 100+10+80=190\left(\mathrm{~cm}^{3}\right)(1) \\ & \frac{37 \times 100) \div 190}{=19 \%(1)}(=19.47 \%) \end{aligned}$ | $\begin{aligned} & \text { accept } 19.47 \% \text { or } \\ & 19.5 \% \end{aligned}$ | 3 |


| question <br> number | answer | mark |
| :--- | :--- | :--- |
| $\mathbf{4 ( c )}$ | $\bullet$ Decreased (1) | Decreased (1) |
|  | $\bullet$ No effect (1) | $\mathbf{3}$ |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{5 ( a )}$ | Any two of: |  |
|  | - concentration of copper(II) sulfate solution (1) <br> • volume of copper(II) sulfate solution (1) <br> $\bullet$ particle size of metal (1) | $\mathbf{2}$ |


| Question <br> number | Answer | Additional guidance | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{5 ( b ) ( i )}$ | $\bullet$ (G) $5.5\left({ }^{\circ} \mathrm{C}\right)(1)$ | accept 5.47 |  |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{5 ( b ) ( i i )}$ | An explanation that makes reference to the following two points: |  |
|  | • <br> $\quad$ because of the biggest temperature increase (1) |  |


| Question <br> number | Answer | Additional guidance | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{5 ( b ) ( i i i )}$ | An explanation that makes reference <br> to the following two points: <br> - F (1) <br> because there is no temperature <br> increase (1) | accept there is no reaction |  |


| Question <br> number | Answer | Additional guidance | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{6 ( a )}$ | The atoms of both elements have one <br> electron in the outer shell | accept highest energy level <br> in place of outer shell | $\mathbf{1}$ |


| Question <br> number | Answer | Additional guidance | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{6 ( b ) ( i )}$ | A description that makes reference to <br> any two of the following points: |  |  |
|  | - sodium floats/moves across the <br> - water (1) <br> - sodium melts (1) <br> sodium disappears/gets smaller <br> (1) <br> - effervescence/fizzing/bubbles/gas <br> given off (1) <br> white trail (1) | accept forms a ball <br> accept sodium dissolves <br> ignore name of gas |  |
|  |  |  |  |


| Question <br> number | Answer | Additional guidance | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{6 ( b ) ( \text { ii) }}$ | An explanation that makes reference <br> to the following points: <br> - (final colour is) purple/blue (1) <br> because the solution is alkaline (1) | accept sodium hydroxide <br> forms/ solution has high <br> pH | $\mathbf{2}$ |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| 6(b)(iii) | D (12) | 1 |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| 6(c) | Lithium | 1 |


| Question <br> number | Answer | Additional guidance | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{6 ( d )}$ | Potassium catches fire | accept lilac/purple/violet <br> flame | $\mathbf{1}$ |


| Question <br> number | Answer | Additional guidance | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{6 ( e )}$ | $\mathbf{2 R b}+\mathbf{2 \mathrm { H } _ { 2 } \mathrm { O } \rightarrow \mathbf { 2 R b O H } + \mathrm { H } _ { 2 } ( 1 )}$ | accept multiples and <br> fractions | $\mathbf{1}$ |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| 7(a)(i) | B and E | $\mathbf{1}$ |
| Question <br> number Answer Mark <br> 7(a)(ii) (the only one that shows) All atoms and all bonds $\mathbf{1}$ |  |  |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{7 ( a ) ( \text { iii) }}$ | - D and F (1) <br> they have the same molecular formula/the same number of <br> each type of atom (1) <br> but different structures/atoms joined together in different <br> ways/different structural formulae (1) |  |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| 7(a)(iv) | 4 | 1 |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{7 ( b ) ( \mathbf { i ) }}$ | An explanation that makes reference to the following points: <br> - incomplete combustion/lack of oxygen (1) <br> - leads to the formation of carbon monoxide (1) |  |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| 7(b)(ii) | It reduces the capacity of blood to transport oxygen | $\mathbf{1}$ |


| Question number | Answer | Additional guidance | Mark |
| :---: | :---: | :---: | :---: |
| 7(c) | An explanation that makes reference to the following points: <br> - nitrogen in the air and oxygen react (1) <br> - at high temperatures (1) <br> - which causes the formation of nitrogen oxide(s) (1) <br> - oxides then react with water (vapour) in the atmosphere to form nitric acid (1) | accept equation and formulae such as $\mathrm{NO} / \mathrm{NO}_{2} / \mathrm{NO}_{\mathrm{x}}$ accept nitrous acid and formulae | 4 |

Total for Question 7 = 13 marks

| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{8 ( a )}$ | One reaction product is a gas and so escapes from the flask | $\mathbf{1}$ |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{8 ( b ) ( \mathbf { i } )}$ | Any one of: |  |
|  | • balance reading recorded too late |  |
| •acid concentration greater than recorded |  |  |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{8 ( b ) ( i i )}$ | Loss in mass directly proportional to acid concentration | $\mathbf{1}$ |


| Question <br> number | Answer | Additional guidance | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{8 ( c )}$ | An explanation that makes reference <br> to the following two points: <br> - more particles in the same volume <br> (1)so collide more frequently <br> (with malachite) (1) | accept particles closer <br> together | $\mathbf{2}$ |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| 9(a) | A description that makes reference to five of the following points: |  |
|  | - crude oil is heated/vaporised (1) <br> (the vapour enters the lower part of the column (1) <br> - the is a temperature gradient up the column (1) <br> condenses in the diesel fraction rises up the column until it <br> at a height where its boiling point is lower than the temperature <br> in the column (1) <br> so the diesel fraction is removed (1) |  |


| Question <br> number | Answer | Additional guidance | Mark |
| :--- | :--- | :--- | :--- |
| 9(b) | An explanation that makes <br> reference to the following three <br> points: <br> - dodecane contains hydrogen <br> and carbon (1) <br> only/and no other elements <br> (1) <br> and contains only single <br> bonds (1) | accept does not contain double <br> bonds/multiple bonds | $\mathbf{3}$ |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| 9(c) | C | 1 |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| 9(d) | $\mathrm{C}_{8} \mathrm{H}_{18}$ | $\mathbf{1}$ |


| Question <br> number | Answer | Additional guidance | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{9 ( e ) ( \mathbf { i } )}$ | Ultraviolet radiation | accept ultraviolet light | $\mathbf{1}$ |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{9 ( e ) ( i i )}$ | HCl | 1 |


| Question <br> number | Answer | Additional guidance | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{9 ( e ) ( i i i )}$ | • All 6 atoms with a dot and |  |  |
| cross representing each |  |  |  |
| bonding pair of electrons (1) |  |  |  |
| 3 lone pairs of electrons on |  |  |  |
| Cl and none on any of the H |  |  |  |
| atoms (1) |  |  |  |$\quad$| accept 2 dots or 2 crosses for |
| :--- |
| each bond |
| and crosses any combination of dots |$\quad .$|  |
| :--- |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| 9(e)(iv) | Substitution | $\mathbf{1}$ |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| 9(f)(i) | D | 1 |


| Question number | Answer |  |  | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 9(f)(ii) | - Dividing percentages by <br> - Dividing results by smalle OR <br> obtaining ratio (1) <br> - Writing empirical formula <br> Example calculation: | mass ue $\begin{aligned} & \mathrm{Br} \\ & \frac{57.6}{80} \\ & 0.72 \\ & 1 \end{aligned}$ | O $\begin{gathered} \frac{11.5}{16} \\ 0.72 \\ 1 \end{gathered}$ | 3 |

Total for Question 9 = 19 marks

| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 0 ( a )}$ | Increment in volume smaller/more precise (1) <br> $\bullet$ Avoids refilling the measuring cylinder (1) |  |



| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 0 ( c ) ( i )}$ | 29.5 | $\mathbf{1}$ |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 0 ( c ) ( \text { ii } )}$ | 20.8 | $\mathbf{1}$ |


| Question number | Answer | Mark |
| :---: | :---: | :---: |
| 10(d) | - Calculation of volume/mass of mixture <br> - Calculation of temperature increase <br> - Substitution of values into $q=m c \Delta T$ <br> - Calculation of heat energy released with unit <br> Example calculation: $\begin{aligned} & 20.0+20.0=40.0\left(\mathrm{~cm}^{3}\right)(1) \\ & 30.0-18.5=11.5\left({ }^{\circ} \mathrm{C}\right)(1) \\ & q=40.0 \times 4.2 \times 11.5(1) \\ & q=1900 \mathrm{~J}(1)(\text { accept } 1932 \mathrm{~J}) \end{aligned}$ | 4 |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 0 ( e )}$ | ( Setting out of $\Delta \mathrm{H}$ calculation <br> Division by 1000 to obtain answer in $\mathrm{kJ} / \mathrm{mol}$ |  |
|  | Example calculation: <br> $1600 \div(0.040(1)$ <br> $=-40(\mathrm{~kJ} / \mathrm{mol})(1)$ | $\mathbf{2}$ |


| Question number | Answer |  |  | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 11(a) | 1 mark for each box completed correctly |  |  |  |
|  | Reactants | Name of salt formed | Other product(s) |  |
|  | (zinc + hydrochloric acid) | zinc chloride | hydrogen |  |
|  | (calcium carbonate <br> + nitric acid) | calcium nitrate | water + carbon dioxide | 4 |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 1 ( b ) ( i )}$ | $\bullet$ Use excess aluminium hydroxide (1) |  |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 1 ( b ) ( i i )}$ | To remove unreacted aluminium hydroxide/solid | $\mathbf{1}$ |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 1 ( b ) ( i i i )}$ | Any one of: |  |
|  | • leave in a warm place (1) <br> • use filter paper or paper towel (1) | $\mathbf{1}$ |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 1 ( c )}$ | Calculation of $M_{r}$ of aluminium hydroxide <br> Calculation of amount of aluminium hydroxide <br> ( 2 Reference to $2: 3$ ratio in equation AND <br> statement that sulfuric acid is in excess |  |
|  | Example calculation: <br> $27+(3 \times 17)=78(1)$ <br> $3.9 \div 78=0.05 \mathrm{~mol}(1)$ |  |
|  | This is more than $3 / 2$ times amount of aluminium hydroxide, so <br> sulfuric acid is in excess (1) (accept other valid methods of <br> calculation) | $\mathbf{3}$ |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 1 ( d )}$ | Calculation of $M_{r}$ of aluminium sulfate setting out calculation of <br> mass final answer |  |
|  | Example calculation: <br> $(27 \times 2)+(32 \times 3)+(16 \times 12)=342(1)$ <br> mass $=342 \times 0.25(1)$ <br> $85.5 \mathrm{~g}(1)$ | $\mathbf{3}$ |


| Question number | Answer | Additional guidance | Mark |
| :---: | :---: | :---: | :---: |
| 11(e) | - Calculation of amount of lead(II) nitrate <br> - Percentage method <br> - Percentage answer <br> Example calculation: $\begin{aligned} & 209 \div 331=0.631 \mathrm{~mol}(1) \\ & \frac{0.631 \times 100}{0.75}(1)=84 \%(1) \end{aligned}$ | allow full credit for calculations using masses | 3 |

Total for Question 11 = 17 marks
TOTAL FOR PAPER = $\mathbf{1 1 0}$ MARKS

