4767 Statistics 2

Question 1

(i)	x	18	43	52	94	98	206	784	1530	M1 for attempt at ranking (allow all ranks reversed)	
	у	1.15	0.97	1.26	1.35	1.28		1.32	1.64	(anow an ranks reversed)	
	Rank <i>x</i>	1	2	3	4	5	6	7	8		
	Rank y	2	1	3	6	4	7	5	8		
	d	-1	1	0	-2	1	-1	2	0	M1 for d^2	
	d^2	1	1	0	4	1	1	4	0	A1 for $\Sigma d^2 = 12$	
										M1 for method for r_s	
	$r_s = 1 - $ = 0	$-\frac{6\Sigma}{n(n^2)}$.86 to 2	2 s.f.]			A1 f.t. for $ r_s < 1$ NB No ranking scores zero	5
(ii)											
	H ₀ : no as	sociat	ion bet	ween	X and	Y in th	e popu	lation		B1 for H ₀	
	H ₁ : some	e assoc	iation	betwee	en X ai	nd Y in	the po	opulati	on	B1 for H ₁	
	-	H ₁ : some association between X and Y in the population Two tail test critical value at 5% level is 0.7381								B1 for population SOI	
	Two tail test critical value at 5% level is 0.7381 Since 0.857> 0. 7381, there is sufficient evidence to reject H_0 , i.e. conclude that the evidence suggests that there is association between population size <i>X</i> and average walking speed <i>Y</i> .								eject	NB $H_0 H_1 \underline{not}$ ito ρ	
										B1 for ± 0.7381	
									lking	M1 for sensible comparison with c.v., provided $ r_s < 1$ A1 for conclusion in words f.t. their r_s and sensible cv	6
(iii)	$\overline{t} = 45, \overline{v}$					10				B1 for \overline{t} and \overline{w} used (SOI)	
	$b = \frac{Stw}{Stt}$	$=\frac{584.6}{13}$	6 – 27(3900 –	$\frac{0 \times 13.4}{270^2}$	$\frac{42/6}{6} =$	$=\frac{-19}{175}$	$\frac{9.3}{0} =$	-0.011		M1 for attempt at	
								-0.01	1	gradient (b)	
	OR $b = \frac{5}{4}$ hence lea						667	0.01	1	A1 CAO for -0.011	
		$v - \overline{w} =$		-						M1 for equation of line	
	=	$\Rightarrow w -$	2.236	7 = -().011($t - 45^{\circ}$)			A1 FT for complete	
		$\Rightarrow w =$								equation	
		-									5

(iv)	(A)	For $t = 80$, predicted speed = $-0.011 \times 80 + 2.73 = 1.85$	M1 A1 FT provided b < 0	
	(B) NB Al	The relationship relates to adults, but a ten year old will not be fully grown so may walk more slowly. low E1 for comment about extrapolation not in context	E1 extrapolation o.e. E1 sensible contextual comment	4
			TOTAL	20

Question 2

(i)	Binomial(5000,0.0001)	B1 for binomial B1 dep, for parameters	2
(ii)	<i>n</i> is large and <i>p</i> is small $\lambda = 5000 \times 0.0001 = 0.5$	B1, B1 (Allow appropriate numerical ranges) B1	3
(iii)	$P(X \ge 1) = 1 - \hat{e} \frac{0.5^0}{0!} = 1 - 0.6065 = 0.3935$	M1 for correct calculation or correct use of tables A1	2
	or from tables $= 1 - 0.6065 = 0.3935$		
(iv)	$P(9 \text{ of } 20 \text{ contain at least one})$ $= {20 \\ 9} \times 0.3935^9 \times 0.6065^{11}$ $= 0.1552$	M1 for coefficient M1 for $p^9 \times (1-p)^{11}$, p from part (iii) A1	3
(v)	Expected number = $20 \times 0.3935 = 7.87$	M1 A1 FT	2
(vi)	Mean = $\frac{\Sigma xf}{n} = \frac{7+4}{20} = \frac{11}{20} = 0.55$	B1 for mean	
	Variance = $\frac{1}{n-1} \left(\Sigma f x^2 - n \overline{x}^2 \right)$	M1 for calculation	
	$=\frac{1}{19}(15-20\times0.55^2)=0.471$	A1 CAO	3
(vii)	Yes, since the mean is close to the variance,	B1	
	and also as the expected frequency for 'at least one', i.e. 7.87, is close to the observed frequency of 9.	E1 for sensible comparison B1 for observed frequency = 7 + 2 = 9	3
		TOTAL	18

_

Question 3

(i)	(A) $P(X < 120) = P\left(Z < \frac{120 - 115.3}{21.9}\right)$	M1 for standardizing A1 for $z = 0.2146$	
	$= P(Z < 0.2146)$ $= \Phi(0.2146) = 0.5849$	A1 CAO (min 3 sf, to include use of difference column)	3
	(B) $P(100 < X < 110) =$ $P\left(\frac{100 - 115.3}{21.9} < Z < \frac{110 - 115.3}{21.9}\right)$	M1 for standardizing both 100 & 110	
	= P(-0.6986 < Z < -0.2420) = $\Phi(0.6986) - \Phi(0.2420)$ = $0.7577 - 0.5956$ = 0.1621	M1 for correct structure in calc ⁿ A1 CAO	3
	(C) From tables $\Phi^{-1}(0.1) = -1.282$ $\frac{k - 115.3}{21.9} = -1.282$	B1 for ± 1.282 seen M1 for equation in <i>k</i> and negative z-value	
	$k = 115.3 - 1.282 \times 21.9 = 87.22$	A1 CAO	3
(ii)	From tables, $\Phi^{-1}(0.70) = 0.5244, \Phi^{-1}(0.15) = -1.036$ $180 = \mu + 0.5244 \sigma$ $140 = \mu - 1.036 \sigma$	B1 for 0.5244 or ± 1.036 seen M1 for at least one equation in μ and σ and Φ^{-1} value	
	$40 = 1.5604 \sigma$ $\sigma = 25.63, \mu = 166.55$	M1 dep for attempt to solve two equations A1 CAO for both	4
(iii)	$\Phi^{-1}(0.975) = 1.96$	B1 for ± 1.96 seen	
	$a = 166.55 - 1.96 \times 25.63 = 116.3$	M1 for either equation A1	
	<i>b</i> = 166.55 + 1.96 × 25.63 = 216.8	A1 [Allow other correct intervals]	4
		TOTAL	17

Question	1
Question	4

					TOTAL	1
There is insufficient larger.			at the flowe	rs are	A1 for fully correct conclusion in words in context	5
1.830 < 2.326 so not significant. There is not sufficient evidence to reject H ₀				M1 (dep on first M1) for sensible comparison leading to a conclusion		
1% level 1 tailed crit	ical value of z	z = 2.326			B1 for 2.326	
Test statistic = $\frac{49.2}{8.5/}$	M1 correct denominator A1					
Result is not significant There is not enough evidence to suggest that there is some association between reported growth and type of plant; NB if $H_0 H_1$ reversed, or 'correlation' mentioned, do not award first B1or final A1					M1 A1	1
Critical value at 5%	level = 9.488				M1 for summation A1 for X^2 CAO B1 for 4 d.o.f. B1 CAO for cv	
Refer to χ_4^2						
$X^2 = 8.69$						
Fennel	1.2955	0.0226	1.2344		NB These M1A1 marks cannot be implied by a correct final value of X^2	
Aster	1.2002	0.6497	3.4172		$(O-E)^2/E$ A1 for all correct	
CONTRIBUTION Coriander	Good 0.0008	Average 0.3772	Poor 0.4899		M1 for valid attempt at $(O, E)^2/E$	
					correct)	
Aster Fennel	10.30	21.70	15.68 15.35		(allow A1 for at least one row or column	
Coriander	12.10 10.56	24.93 21.76	17.97		values (to 2 dp)	
EXPECTED	Good	Average	Poor		M1 A2 for expected	
H ₀ : no association be H ₁ : some association					B1 (in context)	