...day June 20XX - Morning/Afternoon
A Level Mathematics B (MEI)
H640/03 Pure Mathematics and Comprehension

SAMPLE MARK SCHEME

MAXIMUM MARK

75

Text Instructions

1. Annotations and abbreviations

Annotation in scoris	Meaning
\checkmark and \boldsymbol{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
\wedge	Omission sign
MR	
Highlighting	
Other abbreviations in	Meaning
mark scheme Mark for explaining a result or establishing a given result E1 Mark dependent on a previous mark, ind cated by * dep* Correct answer only cao Or equivalent oe Rounded or truncated rot Seen or implied soi Without wrong worki www Answer given AG Anything which round to awrt By Calculator BC This indicates that the truction In this question you must show detailed reasoning appears in the question. DR	

2. Subject-specific Marking Instructions for A Level Mathematics B (MEI)

Annotations should be used whenever appropriate during your marking. The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded For subsequent marking you must make it clear how you have arrived at the mark you have awarded.

An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not corr s ond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner
If you are in any doubt whatsoever you should contact your Team Leader.
c The following types of marks are available.

M

A suitable method has been selected and applied in a manner which shows th the met od is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually suffi ient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may b specified.

A
Accuracy mark, awarded for a correct answer or intermediate step corr ctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded

B
Mark for a correct result or statement independent of M thod marks.
E
A given result is to be established or a result has to be xplained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.
d
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
e
The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if t is is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
f
Unless units are specifically requested, there is no penalty for wrong or missing units as long as the answer is numerically correct and expressed either in SI or in the units of the question. (e.g. lengths will be assumed to be in metres unl ss in a p ticular question all the lengths are in km, when this would be assumed to be the unspecified unit.) We are usually quite flexible about the acc acy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so. When a value is given in he p per only accept an answer correct to at least as many significant figures as the given value. This rule should be applied to each case. When a value is not given in the paper accept any answer that agrees with the correct value to 2 s.f. Follow through should be used so that only one mark is lost f rea h distinct accuracy error, except for errors due to premature approximation which should be penalised only once in the examinati n. There is no penalty for using a wrong value for g. E marks will be lost except when results agree to the accuracy required in the question.

Rules for replaced work: if a candidate attempts a question m re than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests; if there are two or more att mpt at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the ot ers NB ollow these maths-specific instructions rather than those in the assessor handbook.

For a genuine misreading (of numbers or symbols) whi h is su h that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark the ques ion. Marks designated as cao may be awarded as long as there are no other errors. E marks are lost unless, by chance, the given results are establishe by equivalent working. 'Fresh starts' will not affect an earlier decision about a misread. Note that a miscopy of the candidate's own working is not a misr ad but an accuracy error.
i If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers (provided, of course, that there is nothing in the wording of the question specifying that analytical methods are required). Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
j If in any case the scheme operates with considerable unfairness consult your Team Leader.

Question		Answer	$\begin{array}{\|c\|} \hline \text { Marks } \\ \hline \text { M1 } \end{array}$		Guidance	
1		$\begin{aligned} & \frac{2(2 x+1)+5(x-1)}{(x-1)(2 x+1)} \\ & =\frac{9 x-3}{(x-1)(2 x+1)} \end{aligned}$	M1 A1 [2]	1.1 1.1	Numerator should be simplified but need not be factorised, and denominato may be expanded, but mark final answer	
2		$\begin{aligned} & (1-2 x)^{\frac{1}{2}} \\ & \approx 1+\frac{1}{2}(-2 x)+\frac{\frac{1}{2}\left(-\frac{1}{2}\right)}{2!}(-2 x)^{2}+\frac{\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!}(-2 x)^{3} \\ & =1-x-\frac{1}{2} x^{2}-\frac{1}{2} x^{3} \end{aligned}$ valid for $-\frac{1}{2}<x<\frac{1}{2}$	M1 A2 B1 [4]	1.1 1.1 1.1 2.3	bi omial coefficients seen, allow ne error $1-x,-\frac{1}{2} x^{2},-\frac{1}{2} x^{3}$ or A1 for 2 correct terms or $\|x\|<\frac{1}{2}$	In this case, the series converges for $x= \pm \frac{1}{2}$ candidates are not expected to know this but allow \leq for either or both inequalities.

Question		Answer	Marks	AOs	Gui	
5		DR $\begin{aligned} & \text { Radius }=\sqrt{10} \\ & \cos C=\frac{10+10-(7-1)^{2}}{2 \times \sqrt{10} \times \sqrt{10}} \end{aligned}$ $\begin{aligned} & C=2.50 \\ & \text { Area }=\frac{1}{2} \times(3 \mathrm{sf}) \\ & \text { Area }=9.49 \end{aligned}$	B1 M1 A1 M1 A1 [5]	1.1 3.1a 1.1 3.1a 1	Or use right angled triangle: M1 for $\cos x=\frac{3}{\sqrt{10}}$ and $\frac{1}{2} C=\frac{\pi}{2}-\cos ^{-1}\left(\frac{3}{\sqrt{10}}\right)$	
6		$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=4 x^{3}-12 x+4 \\ & \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=12 x^{2}-12=0 \\ & x= \pm 1 \\ & (-1,-4) \text { and }(1,4) \end{aligned}$	M1 A1 M1 A1 A1 $[5]$	1.1 1.2 1.1 2.1	Differentiating once First derivative Differentiating a second time and equating to zero	
7		$\begin{aligned} & \text { E.g. } p=-1, q=2 \\ & \frac{1}{p}=-1, \frac{1}{q}=\frac{1}{2} \end{aligned}$ So $\frac{1}{p}<\frac{1}{q}$ for these values.	B1 E1 [2]	$\begin{gathered} \hline \text { 3.1a } \\ 2.1 \end{gathered}$	correct counter example stated shown	

| Question | | Answer | Marks | AOs | |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathbf{8}$ | (a) | $\mathrm{BAC}=360-120-90-(90-\theta)$
 $=\theta+60$ | Buidance | | |
| $\mathrm{BC}=2 \sin (\theta+60)$
 $\mathrm{CD}=\mathrm{AE}=\sin \theta$
 $\Rightarrow h=\mathrm{CD}+\mathrm{BC}$
 $=\sin \theta+2 \sin \left(\theta+60^{\circ}\right)$ | 3.1a | | | | |
| M1 | 1.1 | | | | |

Question		Answer			Guidance	
9	(a)	$\begin{aligned} & \cos \theta+2 \sin \theta \equiv R \cos (\theta-\alpha) \\ & \Rightarrow R \cos \alpha=1, R \sin \alpha=2 \\ & \Rightarrow R^{2}=5, R=\sqrt{ } 5 \\ & \tan \alpha=2, \alpha=1.107 \end{aligned}$	M1 B1 M1 A1 [4]	$\begin{aligned} & 1.1 \mathbf{a} \\ & 1.1 \\ & 1.1 \\ & 1.1 \end{aligned}$		
9	(b)	$\begin{aligned} & \text { max value is } \frac{1}{(k-\sqrt{ } 5)} \\ & \frac{1}{(k-\sqrt{ } 5)}=\frac{(3+\sqrt{5})}{4} \\ & 4=3 k-5+k \sqrt{5}-3 \sqrt{5} \end{aligned}$ [This is indep of $\sqrt{5}$ so] $k=3$	M1 M1 A1 [3]	3.1a 1.1 1.1		
10	(a)	$\begin{aligned} f(-1) & =(-1)^{4}+(-1)^{3}-2(-1)^{2}-4(-1)-2 \\ & =1-1-2+4-2=0 \end{aligned}$	$\begin{aligned} & \text { E1 } \\ & {[1]} \end{aligned}$	1.1		
10	(b)	$\mathrm{f}(1)=1+1-2-4-2=-6$ or ' n gative' $f(2)=16+8-8-8-2=6$ or 'positive' change of sign \Rightarrow root between 1 and 2	B1 E1 [2]	$\begin{aligned} & 1.1 \\ & 2.4 \end{aligned}$	both correct allow no mention of continuity of f AG	
10	(c)	long division or equating coeffts $\Rightarrow \mathrm{g}(x)=x^{3}-2 x-2 \text { so } a=-2, b=-2$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \end{gathered}$	$\begin{gathered} \hline 1.1 \\ 2.2 \mathrm{a} \\ 1.1 \end{gathered}$		

Question		Answer	Marks	AOs		Guidance
10	(d)	Clear explanation E.g. $\mathrm{f}(x)=(x+1) \mathrm{g}(x)$ For the root of $\mathrm{f}(x)=0$ between 1 and 2, RHS is also zero hence $\mathrm{g}(x)=0$	E1 [1]	2.4		
10	(e)	$\begin{aligned} & x_{n+1}=x_{n}-\frac{g\left(x_{n}\right)}{g^{\prime}\left(x_{n}\right)} \\ & =x_{n}-\frac{x_{n}^{3}-2 x_{n}-2}{3 x_{n}^{2}-2} \\ & =\frac{3 x_{n}^{3}-2 x_{n}-x_{n}^{3}+2 x_{n}+2}{3 x_{n}^{2}-2} \\ & =\frac{2 x_{n}^{3}+2}{3 x_{n}^{2}-2} \end{aligned}$ Root 1.769 (4sf)	M1 E1 A1 [3]	1.1 2.4 2.2a	AG BC	

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Answer \\
\(\mathrm{f}^{\prime}(x)=\mathrm{e}^{-x} \cos x-\mathrm{e}^{-x} \sin x\) \\
\(\mathrm{f}^{\prime}(x)=0\) and \(e^{-x} \neq 0 \Rightarrow \cos x=\sin x\) \(\Rightarrow \tan x=1\)
\[
\Rightarrow x=\frac{\pi}{4}, \frac{5 \pi}{4}, \frac{9 \pi}{4}, \frac{13 \pi}{4}
\] \\
So an AP with \(d=\pi\)
\[
y=\frac{\sqrt{2}}{2} \mathrm{e}^{-\frac{\pi}{4}},-\frac{\sqrt{2}}{2} \mathrm{e}^{-\frac{5 \pi}{4}}, \frac{\sqrt{2}}{2} \mathrm{e}^{-\frac{9 \pi}{4}},-\frac{\sqrt{2}}{2} \mathrm{e}^{-\frac{13 \pi}{4}}
\] \\
This is a GP with \(r=-\mathrm{e}^{-\pi}\)
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{array}{|c}
\hline \text { Marks } \\
\hline \text { M1 } \\
\text { A1 } \\
\text { E1 } \\
\text { M1 } \\
\text { A1 } \\
\\
\\
\text { E1FT } \\
\text { M1 } \\
\text { A1 } \\
\\
\text { E1FT } \\
\text { [9] } \\
\hline
\end{array}
\]} \& AOs \& Guida \& \\
\hline 11 \& (a) \& \begin{tabular}{l}
(i) \\
(ii)
\end{tabular} \& \& \& 3.1a
1.1
2.2 a
1.1
1.1

2.1
3.1 a
1

2 \& \begin{tabular}{l}
product rule correct

Use of $\frac{\sin }{\cos }=\tan$
$$
\begin{aligned}
& x=\frac{\pi}{4}\left(\text { condone } 45^{\circ}\right) \\
& \frac{\pi}{4}, \frac{5 \pi}{4}, \frac{9 \pi}{}, \ldots
\end{aligned}
$$

must state the common difference su stituting one value of x into $\mathrm{f}(x)$

must state common ratio, www

 \&

FT their values of x

FT their values of y
\end{tabular}

\hline 11 \& (b) \& \& Yes with explanation that values of x would continue to be separated by pi and so values of y would continue to have same common ratio. \& | E1 |
| :--- |
| [1] | \& 2.2a \& \&

\hline 12 \& \& \& Each triangle (like OAB) is equilater 1 \& $$
\begin{aligned}
& \text { E1 } \\
& {[1]}
\end{aligned}
$$ \& 2.1 \& oe \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} \& Answer \& Marks \& AOs \& Guid \& \\
\hline \multirow[t]{3}{*}{13} \& \& \begin{tabular}{l}
Show diagram which was previously fig 13 \\
Angle \(A^{\prime} N=\tan 30^{\circ}\) OR \(\tan 30^{\circ}=\frac{1}{A^{\prime} N}\)
\[
A^{\prime} N=\tan 30^{\circ}=\frac{1}{\sqrt{3}}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1
\end{tabular} \& 3.1a
\[
1.1
\] \& soi \& \\
\hline \& \& Alternative method using the equilateral triangle \(O A^{\prime} B^{\prime}\) of side length \(2 a\) :
\[
\begin{aligned}
\& (2 a)^{2}=a^{2}+1 \Rightarrow a^{2}=\frac{1}{3} \\
\& a=A^{\prime} N=\frac{1}{\sqrt{3}}
\end{aligned}
\] \& M1 \& 3.12

1.1 \& \&

\hline \& \& Evidence of $6 \times \mathrm{AB}^{\prime}$ or $12 \times \mathrm{AN}$ $=4 \sqrt{3}$ \& | E1 |
| :--- |
| [3] | \& 2.4 \& AG \&

\hline 14 \& \& | $\begin{aligned} \left(\frac{\sqrt{6}-\sqrt{2}}{2}\right)^{2} & =\frac{8-2 \sqrt{12}}{4} \\ & =\frac{8-4 \sqrt{3}}{4}=2-\sqrt{3} \end{aligned}$ |
| :--- |
| $\frac{\sqrt{6}-\sqrt{2}}{2}$ is positive so it is equal to $\sqrt{2-\sqrt{3}}$ | \& | M1 |
| :--- |
| A1 |
| E1 |
| [3] | \& | 3.1a |
| :--- |
| 1.1 |
| 2.1 | \& | Attempt to square |
| :--- |
| Answer in exact form |
| Completion of argument to show the two values are equal | \&

\hline
\end{tabular}

Question			Answer ${ }^{\text {a }}$ Marks		AOs	Guidance	
15	(a)		$\begin{aligned} & \text { Angle }=360 \div 24=15 \\ & \text { Edge length }=2 \tan 15^{\circ} \\ & \text { Perimeter }=12 \times 2 \tan 15^{\circ} \\ & =24 \tan 15^{\circ} \end{aligned}$	M1 E1 [2]	1.1 2.1	AG	
15	(b)		$\begin{aligned} & \tan 15^{\circ}=\tan \left(45^{\circ}-30^{\circ}\right) \\ & =\frac{1-\frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}}\left[=\frac{\sqrt{3}-1}{\sqrt{3}+1}=\frac{(\sqrt{3}-1)^{2}}{2}\right] \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \end{aligned}$	$\begin{gathered} \hline \text { 3.1a } \\ 1.1 \end{gathered}$	Exact lues of $\tan 45^{\circ}$ and $\tan 30^{\circ}$ used	
			$\begin{aligned} & \text { Alternative method } \\ & \tan 15^{\circ}=\tan \left(60^{\circ}-45^{\circ}\right) \\ & =\frac{\sqrt{3}-1}{1+\sqrt{3}} \quad\left[=\frac{2 \sqrt{3}-4}{-2}\right] \end{aligned}$	B1 M1	3.1a 1.1	Exact values of $\tan 60^{\circ}$ and $\tan 15^{\circ}$ used	
			$\begin{aligned} & \text { Perimeter }=12 \times 2 \tan 15^{\circ} \\ & =48-24 \sqrt{3} \end{aligned}$	E1	2.1	Correct completion AG	
16		(i) (ii)	Lower bound: $3(\sqrt{6}-\sqrt{2})$ Upper bound: $24-12 \sqrt{3}$ $=3.11$ and 3.22	B1 B1 B1 [3]	$\begin{align*} & 1.1 \tag{3}\\ & 1.1 \\ & 1.1 \end{align*}$	Half perimeter (from text) Both as decimals	

Question	A01	AO2	AO3(PS)	AO3(M)	Total
1	2				2
2	3	1			4
3	2	1	1		4
4	1	1	1		3
5	3	0	2		5
6	4	1			5
7		1	1		2
8 a	1	1	1		3
8 b	3	1	1		5
9 a	4	0			4
9 b	2		1		3
10 a	1				1
10 b	1	1			2
10 c	2	1			3
10 d		1			1
10 e	1	2			3
11 a	4	3	2		9
11 b		1	0		1
12		1			1
13	1	1	1		3
14	1	1	1		3
15 a	1	1			2
15 b	1	1	-		3
16 i	2				2
16 ii	1				1
Totals	41	21	13	0	75

