Write your name here		
Surname	Ot	ther names
Edexcel GCE	Centre Number	Candidate Number
Chemistr Advanced Subsidia Unit 1: The Core Pr	ary	emistry
Thursday 13 January 201 Time: 1 hour 30 minutes	5	Paper Reference 6CH01/01
Candidates may use a calcul	lator.	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box ⊠. If you change your mind, put a line through the box ≅ and then mark your new answer with a cross ⊠.

- 1 The compound butane has
 - \square A the empirical formula C₄H₁₀ and the molecular formula C₂H₅.
 - \square **B** the empirical formula C₂H₅ and the molecular formula C₄H₁₀.
 - \square C the empirical formula C₂H₅ and the molecular formula C_nH_{2n+2}.
 - \square **D** the empirical formula C_nH_{2n+2} and the molecular formula C_4H_{10} .

(Total for Question 1 = 1 mark)

2 For the oxidation of ammonia

a NH₃ + b $O_2 \rightarrow c NO + d H_2O$

the values of the coefficients in the balanced equation are

 \square **A** a = 2, b = 3, c = 2 and d = 3

 \blacksquare **B** a = 4, b = 7, c = 4 and d = 4

 \Box **C** a = 4, b = 5, c = 4 and d = 6

 \square **D** a = 6, b = 7, c = 6 and d = 9

(Total for Question 2 = 1 mark)

- 3 The Avogadro constant is 6.0×10^{23} mol⁻¹. Therefore the number of **atoms** in 1 mol of carbon dioxide is
 - $\blacksquare \mathbf{A} \quad 2.0 \times 10^{23}$
 - **B** 6.0×10^{23}
 - \square C 1.2×10^{24}
 - **D** 1.8×10^{24}

(Total for Question 3 = 1 mark)

4	The eq	uation for the complete combustion of octane is	
		$2\mathrm{C}_{8}\mathrm{H}_{18} + 25\mathrm{O}_{2} \rightarrow 16\mathrm{CO}_{2} + 18\mathrm{H}_{2}\mathrm{O}$	
	(a) The	e mass of 10 mol of octane is	
		0.66 kg	(1)
	B	1.14 kg	
		2.10 kg	
	D	2.28 kg	
	is 2	e volume of 1 mol of any gas (measured at room temperature and pressure) 24 dm ³ . Hence the volume of oxygen (measured at room temperature and ssure) required for the complete combustion of 10 mol of octane is	(1)
	A	240 dm ³	
	B	300 dm ³	
	C	3000 dm ³	
	D 🛛	6000 dm ³	
_		(Total for Question 4 =	2 marks)
5	The en	thalpy change for the reaction	
		$CH_4(g) \rightarrow C(g) + 4H(g)$	
	is +164	48 kJ mol ^{-1} . Hence the mean bond enthalpy for the C–H bond is	
	A	+329.6 kJ mol ⁻¹	
	B	+412.0 kJ mol ⁻¹	
	C	+1648 kJ mol ⁻¹	
	D 🛛	+6592 kJ mol ⁻¹	
_		(Total for Question 5 =	1 mark)

3

6 The graph below represents the successive ionization energies of an element X plotted against the number of the electron removed. X is not the symbol for the element. 5 4.5 Logarithm 4 ionization 3.5energy 3 2.5 2 + 0 = 02 12 10 4 8 6 Electron removed (a) From this graph it is possible to deduce the group in the Periodic Table to which X belongs. X is in (1) 🖾 A Group 1 Group 3 Group 5 **C D** Group 7 (b) From the graph it is possible to deduce that the most stable ion of X will be (1) X^{3+} 🖾 A \mathbf{X}^+ **C** X^{-} X^{3-} X D (Total for Question 6 = 2 marks) Use this space for any rough working. Anything you write in this space will gain no credit.

7		At R is in Group 1 of the Periodic Table and element T is in Group 6. R and T the symbols for the elements.
	(a) The	compound of \mathbf{R} and \mathbf{T} will have the formula
	A	(1) RT
	B	RT ₆
	C	RT ₂
	D	R_2T
	(b) The	e compound of \mathbf{R} and \mathbf{T} will have bonding which is predominantly (1)
	A	ionic.
	B	covalent.
	C	dative covalent.
	D 🛛	metallic.
	(c) In t	erms of its electrical conductivity, the compound of \mathbf{R} and \mathbf{T} will (1)
	A 🛛	conduct when solid and liquid.
	B	conduct when solid but not when liquid.
	C	conduct when liquid but not when solid.
	D 🛛	not conduct when solid or liquid.
		(Total for Question 7 = 3 marks)
	Use th	is space for any rough working. Anything you write in this space will gain no credit

1

5

8	Ethane	e reacts with chlorine when the substances are exposed to UV radiation.	
	(a) Th	e equation for this reaction is	(1)
	A	$C_2H_6 + Cl_2 \rightarrow C_2H_5Cl + HCl$	
	B	$C_2H_6 + Cl_2 \rightarrow C_2H_4Cl_2 + H_2$	
	C	$C_2H_6 + Cl_2 \rightarrow 2CH_3Cl$	
	D D	$C_2H_4 + Cl_2 \rightarrow C_2H_4Cl_2$	
	(b) The	e role of the UV radiation in the reaction is to	(1)
	🖾 A	break the Cl—Cl bond forming Cl• free radicals.	
	B	break the Cl—Cl bond forming Cl ⁺ and Cl ⁻ ions.	
	C	break the C—C bond in ethane forming CH ₃ • free radicals.	
	D 🛛	break a C—H bond in ethane forming C_2H_5 • free radicals.	
	(c) The	e overall reaction between ethane and chlorine is best described as	
	A	addition.	(1)
	B	homolytic fission.	
	C	heterolytic fission.	
	D D	substitution.	
_		(Total for Question 8 = 3 m	arks)

Use this space for any rough working. Anything you write in this space will gain no credit.

This qu	nestion concerns the following compounds
	A B C D
Which	of these compounds will show geometric (<i>E</i> – <i>Z</i> or <i>cis/trans</i>) isomerism?
A	
B	
C	
D D	
	(Total for Question 9 = 1 mark)
The co	rrect name for the compound shown below is
A 🛛	2-methylbut-3-ene
B	3-methylbut-2-ene
C	3-methylbut-3-ene
D 🛛	2-methylbut-2-ene
	(Total for Question 10 = 1 mark)
	ompounds of lead are insoluble, an exception being lead(II) nitrate. Therefore a nethod of preparing lead(II) sulfate is
A	adding dilute sulfuric acid to lead metal.
B	adding concentrated sulfuric acid to lead metal.
C	adding dilute sulfuric acid to lead(II) nitrate solution.
D 🛛	adding dilute sulfuric acid to solid lead(II) oxide.
	(Total for Question 11 = 1 mark)
	7
	Image: State of the s

Metals are	usually have high melting temperatures and boiling temperatures because there
A	strong attractions between the ions.
B	strong attractions between the delocalised electrons.
C	strong attractions between the ions and the delocalised electrons.
D 🛛	strong intermolecular forces.
	(Total for Question 12 = 1 mark)
In 200 equiva	6, the concentration of carbon dioxide in the atmosphere was 382 ppm. This is lent to
A	0.00382%
B	0.0382%
C	0.382%
D 🛛	3.82%
	(Total for Question 13 = 1 mark)
A haza A A C B C D	rd that is particularly associated with alkanes is that they are corrosive. flammable. toxic by inhalation. toxic by skin absorption.
	(Total for Question 14 = 1 mark)
	TOTAL FOR SECTION A = 20 MARKS
	are A B C D In 2000 equiva A B C D A haza A A B C D

BLANK PAGE

_

- 16 (a) Coral reefs are produced by living organisms and predominantly made up of calcium carbonate. It has been suggested that coral reefs will be damaged by global warming because of the increased acidity of the oceans due to higher concentrations of carbon dioxide.
 - (i) Write a chemical equation to show how the presence of carbon dioxide in water results in the formation of carbonic acid. State symbols are **not** required.

(1)

(ii) Write the **ionic** equation to show how acids react with carbonates. State symbols are **not** required.

(b) One method of determining the proportion of calcium carbonate in a coral is to dissolve a known mass of the coral in excess acid and measure the volume of carbon dioxide formed.

In such an experiment, 1.13 g of coral was dissolved in 25 cm³ of hydrochloric acid (an excess) in a conical flask. When the reaction was complete, 224 cm³ of carbon dioxide had been collected over water using a 250 cm³ measuring cylinder.

(i) Draw a labelled diagram of the apparatus that could be used to carry out this experiment.

(2)

(ii) Suggest how you would mix the acid and the coral to ensure that no carbon dioxide escaped from the apparatus.

(1)

(iii) Calculate the number of moles of carbon dioxide collected in the experiment.

[The molar volume of any gas is 24 000 $\text{cm}^3 \text{ mol}^{-1}$ at room temperature and pressure.]

(1)

(Total for Question 16 = 12 r	1141 NJ
(Total for Question $16 - 12$	norks)
	(1)
(vii) When this experiment is repeated, the results are inconsistent. Suggest a reas for this other than errors in the procedure, measurements or calculations.	
Give your final answer to three significant figures.	(2)
(vi) Use your data and the equation in (iv) to calculate the mass of calcium carbon in the sample and the percentage by mass of calcium carbonate in the coral.	nate
[Assume relative atomic masses: $Ca = 40$, $C = 12$, $O = 16$.]	(1)
(v) Calculate the mass of 1 mol of calcium carbonate.	
$CaCO_{3}(\dots, \dots) + 2HCl(\dots, \dots) \rightarrow CaCl_{2}(\dots, \dots) + H_{2}O(l) + CO_{2}(\dots, \dots)$	
	(1)

_

17 This question is about the element chlorine (atomic number = 17).
(a) Complete the electronic structure of chlorine. (1)
1s² 2s²
(b) Chlorine forms compounds with magnesium and with carbon.
(i) Draw a dot and cross diagram to show the electronic structure of the compound magnesium chloride (only the outer electrons need be shown). Include the charges present. (2)

(ii) Draw a dot and cross diagram to show the electronic structure of the compound tetrachloromethane (only the outer electrons need be shown).

(2)

magnesium chloride, even though both are almost 100% ionic.	2
	(3)
c) Magnesium chloride may be prepared from magnesium by reaction with chlorine	
or with hydrochloric acid. Compare these two preparations in terms of the atom economies of the reactions. No calculation is required.	
	(2)
(Total for Question 17 = 10 ma	rks)

 $| \underbrace{1}_{N} \underbrace{1}_{N} \underbrace{1}_{3} \underbrace{1}_{3} \underbrace{1}_{7} \underbrace{1}_{9} \underbrace{1}_{6} \underbrace{1}_{2} \underbrace{1}_{4} \underbrace{1}_{4} \underbrace{1}_{4} \underbrace{1}_{1} \underbrace{1}_{4} \underbrace{1}_{4}$

BLANK PAGE

18 Alkenes are unsaturated hydrocarbons which, because of their reactivity, are important industrial starting materials. Alkenes for industrial use are obtained by cracking alkane	es.
(a) Write the equation for the cracking of decane $(C_{10}H_{22})$ to form 1 molecule of prope	ne
as the only alkene.	(1)
(b) The carbon–carbon double bond in alkenes consists of a σ and a π bond.	
(i) Explain, using diagrams, the difference between the σ and the π bond in the	
carbon–carbon double bond of an alkene.	(4)
D.	(4)
Diagrams	
Explanation	
(ii) State the type and mechanism involved in the typical reaction of alkenes.	
	(1)

		(2)
) Whe	en propene reacts with hydrogen bromide, there are two possible products.	
(i)	Draw a displayed formula of each of these products and label the major product.	
		(2)
(ii)	Give the mechanism for the reaction of propene with hydrogen bromide which forms the major product.	
	Terme are major product	(3)

(iii)	Explain, by referring to the mechanism, why the major product is formed.	(2)
		(2)
(d) The	polymer poly(propene) is manufactured from propene.	
(i)	Write an equation for the polymerization, drawing the displayed formula of the repeat unit of poly(propene).	(3)
	UV rediction courses not (pronone) to degrade. Suggest one advantage and one	
(11)	UV radiation causes poly(propene) to degrade. Suggest one advantage and one disadvantage of this.	(2)
Advantage		
01sadvanta	ge	
	(Total for Question 18 = 20 mar	rks)
		T
	N 3 7 9 6 2 A 0 1 9 2 4	Turn o

_

BLANK PAGE

19 The enthalpy change of combustion of ethanol was determined using the apparatus shown in the diagram below. In the experiment, the temperature increase of the water in the beaker is measured when a known mass of the ethanol is burned.

(a) The results of the experiment are summarised in the table below.

Mass of water in the beaker	250.00 g
Mass of spirit burner + contents (initial)	63.21 g
Mass of spirit burner + contents (final)	62.47 g
Temperature of water (initial)	21.0 °C
Temperature of water (final)	31.5 °C

(i) Calculate the heat energy produced by the combustion of the alcohol using the equation

heat energy produced (J) = mass of water \times 4.18 \times temperature change

(1)

(ii)	Calculate the number of moles of ethanol burned in this experiment (the formula
	of ethanol is C_2H_5OH).

(3)

(iii)	Use the equation bel	ow to calculate	the enthalpy	change of	combustion of
	ethanol in kJ mol ⁻¹ .	Give the value	an appropria	te sign.	

 ΔH = heat energy produced \div number of moles

(2)

(b) The data book value for the enthalpy change of combustion of ethanol is $-1370 \text{ kJ mol}^{-1}$.

(i) Calculate the percentage error in the value calculated in (a)(iii) in comparison with the data book value.

(1)

(ii) List three ways in which the design of the experiment causes the results to be so different from the data book value. (You should be specific but detailed explanations are not required.)

(3)

1

(iii) Use the data book values for enthalpy changes of combustion given in the table below to calculate the enthalpy change of formation of ethanol.

(3)

Substance	Enthalpy change of combustion / kJ mol ⁻¹
C(s, graphite)	-394
H ₂ (g)	-286
C ₂ H ₅ OH(1)	-1370

(Total for Question 19 = 13 marks)

TOTAL FOR SECTION B = 60 MARKS TOTAL FOR PAPER = 80 MARKS

										_														-										
	0 (8)	(18)	4.0	helium helium	2	20.2	Ne	neon	10	39.9	Ar	argon 18	83.8	Ъ	krypton	36	131.3	Xe	xenon	54 24	[222]	Rn	radon 86		ted									
	7	-			(17)	19.0	Ŀ	fluorine	6	35.5	ບ	chlorine 17	79.9	Br	bromine	35	126.9	_	iodine	ζĊ	[210]	At	astatine 85		een repor		ſ	175	ב	lutetium 71	[257]	ŗ	lawrencium 103	22-
	9				(16)	16.0	0	oxygen	8	32.1	s	sulfur 16	79.0	Se	selenium	34	127.6	Te	tellurium	75	[209]	Ъ	polonium 84		116 have b	ticated		173	٩	ytterbium 70	[254]	٩	nobelium 102	171
	2				(15)	14.0	z	nitrogen	7	31.0	٩	phosphorus 15	74.9	As	arsenic	33	121.8		2	_	209.0	Bi	bismuth 83		Elements with atomic numbers 112-116 have been reported	but not fully authenticated	Ī	169		thulium 69	[256]		mendelevium 101	
	4				(14)	12.0	U	carbon	9	28.1		silicon 14	72.6	9 Ge	germanium	32	118.7	Sn		Ŋ	207.2	Pp	lead 82		atomic nun	but not fu	ľ	167	Ъ:	erbium 68	[253]	E	_	~~~
	m				(13)	10.8	8	boron	ъ	27.0	AI	aluminium 13	69.7	Ga	- -	-	114.8	<u>_</u>	indium	49	204.4	F	thallium 81		ents with a		Ī	165	٩	holmium 67	[254]	Ę	einsteinium 99	
ents					I							(12)	65.4	Zn	zinc	30	112.4	PC	cadmium	48	200.6	Hg	mercury 80		Elem		Ī	163	2	dysprosium 66	[251]	ູ່ລຸ	californium einsteinium 98 99	Ś
Elem												(11)	63.5	Cu	copper	29	107.9	Ag	silver	4/	197.0	Au	gold 79	[272]	Rg	oentgenium 111				terbium 6	[245]		berkelium o 97	
The Periodic Table of Elements												(01)	58.7	Ż	nickel	28	106.4	ЪЧ	palladium	46	195.1	Ł	platinum 78	[271]		darmstadtium r 110	2	157	B	gadolinium 64	[247]	Б С	aurium 96	2
c labl												(6)	58.9	0 C	cobalt	27	•		F	45	192.2	<u>-</u>	iridium 77	[268]	Mt	meitnerium 109			Eu	europium 63	[243]	Am	n neptunium plutonium americium 93 94 95	<u>`</u>
LIOQIC		C	<u>2</u> 1	hydrogen	-							(8)	55.8	Ъ Р	iron	26	101.1	Ru	ruthenium	4	190.2	õ	osmium 76	[277]	Hs	hassium 108	2	150	Sm	samarium 62	[242]	Pu	plutonium 94	-
e Pe												(2)	54.9	WD	manganese	25	[98]	Ч	fect	43	186.2	Re	rhenium 75	[264]		bohrium 107		[147]	Pm	promethium 61	[237]	ď	neptunium 93	?
_						mass	loc		umber			(9)	52.0	ں د	chromium	24	95.9	Mo	m	42	183.8	3	tungsten 74	[266]	Sg	seaborgium 106	2	144	PN.	neodymium 60	238	⊃	uraniun 92	1
					Key	relative atomic mass	atomic symbol	name	atomic (proton) number			(2)	50.9	>	vanadium	23	92.9	qN	Е	41	180.9	Ta	tantalum 73	[262]		dubnium 105	ш	141	P	praseodymium neodymium promethium 59 60 61	[231]	Ра	protactinium 91	
						relati	ato		atomic			(4)	47.9	ï	titanium	22	91.2	Zr	zirconium	40	178.5	Ηf	hafnium 72	[261]	Rf	rutherfordium 104		140	e.	cerium 58	232		thorium 90	
												(3)	45.0	Sc	scandium	21	88.9	≻	yttrium	۶۶	138.9	La*	lanthanum 57	[227]	Ac*	actinium 89	;		S					
	2				(2)	0.6	Be	beryllium	4	24.3	Mg	magnesium 12	40.1	Ca	calcium	20	87.6	Sr	strontium	δč	137.3	Ba	barium 56	[226]	Ra	radium 88			* Lanthanide series	* Actinide series				
	F				(1)	6.9	:-	lithium	m	23.0		sodium 11	39.1	¥	potassium	19	85.5	ď	rubidium	3/	132.9	പ	caesium 55	[223]	Ľ	francium 87	;		* Lanth	* Actin				

The Periodic Table of Flements