

GCSE MATHEMATICS 8300/2H

Higher Tier Paper 2 Calculator

Mark scheme

June 2023

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2023 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

М	Method marks are awarded for a correct method which could lead to a correct answer.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Q	Answer	Mark	Comments			
	$\frac{30}{12}$ or 2.5	B1	oe fraction, mixed number or decimal eg $\frac{5}{2}$ or $2\frac{1}{2}$			
1	Additional Guidance					
'	Ignore simplification or conversion at					
	eg $\frac{30}{12}$ in working with 2.6 on answer	B1				
	30 ÷ 12 with no further correct work	В0				

Q	Answer	Mark	Comments			
	28	B1				
2	Additional Guidance					

Q	Answer	Mark	Comments		
	$\frac{7}{4}$ or 1.75	B1	oe fraction, mixed number or decimal eg 1 $\frac{3}{4}$		
	Ad	ditional G	Guidance		
	Ignore conversion attempt after corre	ct answer	seen		
	eg $\frac{7}{4} = 1.8$	B1			
3	Condone answer $\frac{1}{\frac{4}{7}}$	B1			
	Condone answer $\left(\frac{4}{7}\right)^{-1}$ (without by	B1			
	Do not allow $1 \div \frac{4}{7}$	В0			
	$\frac{-7}{-4}$	B1			

Q	Answer	Mark	Comments		
	112.5% or 1.125 or $\frac{9}{8}$ or 19.53 ÷ 112.5 (× 100) or 0.1736 (× 100)	M1	oe eg 1 + 0.125 or 19.53 ÷ 9 × 8 or 2.17 × 8		
	17.36	A1			
	Ade	ditional G	Guidance		
4	M1 may be awarded for correct work even if this is seen amongst multiple		nswer or incorrect answer,		
	M1 may be seen in a trial (the answe eg 15 × 1.125	al can be ignored)	M1		
	19.53 × 1.125			M1	
	Do not allow misreads for 12.5%				
	eg1 19.53 ÷ 1.0125				
	eg2 19.53 ÷ 112			MO	
	112.5 not recovered			MO	

Q	Ans	wer		Mark		Comments		
	45 × 8 or 360			M1	oe number of 2p coins may be embedded			
	45 × 8 × 2 or 360 × 2 or 720 or 7.2(0)			M1dep	oe value of 2p coins implied by 1170 or 11.7(0)			
	17.7(0) – their 7.2 or 1770 – their 720 – or 6(.00) or 600			M1dep	oe value of 5p coins implied by 7.2 : 6 oe ratio not in simplest form or 6 : 7.2 oe ratio			
	6:5			A1	accept 1.2:1 or $\frac{6}{5}$:1 or $1\frac{1}{5}$:1 or 1:0.83() or 1: $\frac{5}{6}$			
5	Additional Guidance							
	Up to M3 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts							
	Allow working in pence or pounds throughout							
	Must work consistently in pence or pounds for the third mark (or recover)							
	Ignore units in the ratio eg 6p : 5p or £1.20 : £1						M3A1	
	720 may be seen in a ratio with the value of the 10p coins eg 720 : 450 or 7.2 : 4.5					3	M2	
	600 may be seen in a ratio with the value of the 10p coins eg 600 : 450 or 6 : 4.5						МЗ	
	For information:	Coin	10p	2p	5p			
		Number	45	360	120			
		Value	£4.50	£7.20	£6.00			

Q	Answer	Mark	Comments			
	360 ÷ 8 or 135 seen	M1	oe eg $45 \times 8 = 360$ or $180 - \frac{(8-2)\times180}{8}$ may be on diagram			
6(a)	45	A1				
	Additional Guidance					
	M1 may be awarded for correct work even if this is seen amongst multiple					
	45 seen but not chosen as answer, e	M1A0				

Q	Answer	Mark	Comments
6(b)	It is less than the answer to part (a)	B1	

Q	Answer			N	lark			Commen	ts	
	All values		B2 B1 1 or 2 rows corr			s correct				
	Additional Guidance									
7(-)		1	2	3		4	5	6		
7(a)	2x	2	4	6		8	10	12		B2
	3x	3	6	9	,	12	15	18		DZ
	x ²	1	4	9		16	25	36		
									'	

Q	Answer	Mark	Comments			
	$\frac{8}{18}$ or $\frac{4}{9}$ or 0.44(4) or 44(.4)%	B1ft	oe fraction, decimal or perce ft their table with ≥ 12 values must be using 18 for the tota possible scores	3		
	Additional Guidance					
7(b)	Ignore simplification or conversion attempt (not ratio) after correct probability seen					
	Ratio answer eg 8 : 18, even alongside a correct probability is B0					
	ft decimals or percentages must be correct to the same accuracy as in the scheme					
	eg 10 winning values in their table					
	$\frac{10}{18}$ or 0.55(5) or 0.56 or 0.556 or 55(.5)% or 56% or 55.6%					

Q	Answer	Mark	Comments		
	$711 \times \text{their } \frac{8}{18}$	M1	oe ft their probability from (b) or if no probability in (b), ft thei with ≥ 12 values where 0 < their probability < 1 probabilities, if rounded in (c), r truncated or rounded to at lease SC2 395	nust be	
	Ado	ditional G	Guidance		
	Answer 316			M1A1	
	$\frac{316}{711}$ on answer line				
	Condone 316 out of 711				
7(c)	Do not treat estimating by rounding as a misread eg1 700 used instead of 711 eg2 (b) 0.44 (c) 0.4 × 711 (rounded to 1sf in (c) for the probability) eg3 (b) 0.4 (c) 0.4 × 711 (follows through their (b))				
	Do not allow ft for a ratio from (b) but may ft their (a) instead				
	For 0.44 × 711, accept 44% × 711 but do not accept 44% of 711 unless recovered				
	The method mark may be implied by a ft answer (decimal or truncated to the nearest integer or rounded up to the nearest integer) eg1 (b) $\frac{7}{18}$				
	(c) 276.5 or 276 or 277 (correct ft method implied using (b))				
	eg2 (a) completed table has 7 winning values (b) no probability shown (c) 276.5 or 276 or 277 (correct ft method implied using (a))				

Q	Answer	Mark	Comments			
	a = 8 and $b = 6$		B1 $a - 3 = 5$ or $a = 3 + 4$	- 5 or a = 8		
		B2	or			
		B2	$2b = 12$ or $b = 12 \div 2$ or $b = 6$			
			SC1 $a = 6$ and $b = 8$			
8	Additional Guidance					
	Ignore working if B2 or B1 or SC1 se					
	$(a-3)x^2 = 5x^2$ with no further correct	В0				
	For B1 do not allow embedded value	В0				

Q	Answer	Mark	Comments	
	Identifies (6, 3) or (7, 9) or (-4, 3) or (-3, 9)	M1	may be seen on the grid mark intention on diagram eg parallelogram drawn with vertices at (6, 3) or (6, 3) plo	
	Identifies (6, 3) and (7, 9) or identifies (-4, 3) and (-3, 9)	M1dep	may be seen on the grid mark intention on diagram eg parallelogram drawn with two of the vertices at (6, 3) and (7, 9) or (6, 3) and (7, 9) plotted	
9	Both diagonals drawn for one of the correct parallelograms or centre of one of the correct parallelograms identified or (4, 6) or (-1, 6)	M1dep	mark intention on diagram M3 may be implied eg $\left(\frac{1+7}{2}, \frac{9+3}{2}\right)$ or $\left(\frac{-4+2}{2}, \frac{9+3}{2}\right)$	
	(4, 6) and (-1, 6)	A1		
	Ade	ditional G	uidance	
	Up to M3 may be awarded for correct answer, even if this is seen amongst			
	Both answers correct (ignore working	g)		M3A1
	One answer correct (ignore working)			M3A0
	For first 2 marks condone correct points plotted even if labelled incorrectly			
	Up to M2 can be awarded for coordinates given as answers			
	Arc centre A radius 5 cm passing thro sufficient to award M1 etc	ough (6, 3)	and/or (–4 , 3) is not	

Q	Answer	Mark	Comments	
	(4 -3)	B2	B1 $\begin{pmatrix} 4 \\ \end{pmatrix}$ or $\begin{pmatrix} \\ -3 \end{pmatrix}$ SC1 $\begin{pmatrix} -4 \\ 3 \end{pmatrix}$	
	Ade	ditional G	Guidance	
	$(4, -3)$ or $\begin{pmatrix} -3\\4 \end{pmatrix}$			В0
	Ignore words if a vector is also seen			
	eg1 Reflection $\begin{pmatrix} 4 \\ -3 \end{pmatrix}$			B2
10	eg2 4 right 3 up and $\binom{4}{3}$			B1
	eg3 4 right 3 down			В0
	eg4 Rotate 4 left and 3 up and $\begin{pmatrix} -4\\ 3 \end{pmatrix}$			SC1
	Condone any type of brackets			
	Condone missing brackets for B2 or I in a column	B1 or SC1	but must have two numbers	
	Condone 'fraction line' for B2 or B1 or SC1 but must have two numbers in a column			
	$\begin{pmatrix} 4x \\ -3y \end{pmatrix}$ or $\begin{pmatrix} x4 \\ -y3 \end{pmatrix}$ or $\begin{pmatrix} x+4 \\ y-3 \end{pmatrix}$ or $\begin{pmatrix} 3x+4 \\ 3y-3 \end{pmatrix}$	4 right 3 down	or $\begin{pmatrix} 4 \text{ r} \\ 3 \text{ d} \end{pmatrix}$ or $\begin{pmatrix} 4 \rightarrow \\ 3 \downarrow \end{pmatrix}$	В0

Q	Answer	Mark	Comments	
	Alternative method 1 Compares 70	0% of volu	ume of hemisphere with volume of water	
	$\frac{4}{3} \times \pi \times 12^3$ or 2304π		oe eg $\frac{4}{3}\pi \times 1728$	
	or [7216, 7239.2]		allow without any multiplication signs	
	or	M1	$eg \frac{4}{3}\pi 12^3$	
	$\frac{2}{3} \times \pi \times 12^3$ or 1152 π		G The state of the	
	or [3581, 3638]			
	$0.7 imes their 1152\pi$ or 806.4π		oe	
	or [2506, 2547]	M1dep	0.7 × their [3581, 3638] or $\frac{4032}{5}\pi$	
			must be using volume of hemisphere	
	325 × 8 or 2600	M1	oe	
	[2506, 2547] and 2600 and Yes	A1	oe	
11	Alternative method 2 Works out volume of water as proportion of volume of hemisphere			
	$\frac{4}{3} \times \pi \times 12^3$ or 2304π		oe eg $\frac{4}{3}\pi \times 1728$	
	or [7216, 7239.2]		allow without any multiplication signs	
	or	M1	$eg \frac{4}{3}\pi 12^3$	
	$\frac{2}{3} \times \pi \times 12^3$ or 1152 π		3	
	or [3581, 3638]			
	325 × 8 or 2600	M1	oe	
	their 2600 ÷ their 1152π		oe eg their 2600 ÷ their [3581, 3638]	
	or [0.71, 0.73]	M1dep	or 72%	
			dep on M2	
			must be using volume of hemisphere	
	[71, 73](%) and Yes	A1	oe eg 0.72 and 0.7 and Yes	

Question 11 continues on the next page

	Alternative method 3 Works out time to fill 70% of volume of hemisphere		
	$\frac{4}{3} \times \pi \times 12^{3}$ or 2304 π or [7216, 7239.2] or $\frac{2}{3} \times \pi \times 12^{3}$ or 1152 π or [3581, 3638]	M1	oe eg $\frac{4}{3}\pi \times 1728$ allow without any multiplication signs eg $\frac{4}{3}\pi 12^3$
11 cont	$0.7 \times$ their 1152π or 806.4π or $[2506, 2547]$ or their $1152\pi \div 325$ or $[11, 11.2]$	M1dep	oe $0.7 \times \text{their} [3581, 3638] \text{ or } \frac{4032}{5} \pi$ or $\text{their} [3581, 3638] \div 325$ must be using volume of hemisphere
	0.7 × their 1152π ÷ 325 or 0.7 × their [3581, 3638] ÷ 325 or [7.7, 7.84]	M1dep	oe their [2506, 2547] ÷ 325 or 0.7 × their [11, 11.2]
	[7.7, 7.84] and Yes	A1	oe

Question 11 continues on the next page

	Additional Guidance	
	Up to M3 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts	
	Allow 1.33() for $\frac{4}{3}$	
	Allow 0.66() or 0.67 for $\frac{2}{3}$	
	π may be seen as [3.14, 3.142] eg Alt 1 $\frac{2}{3} \times 3.14 \times 12^3$	M1
	If a number (or calculation) in terms of π is seen but π is subsequently omitted, treat as a miscopy for M marks	
11	eg Alt 1	
cont	1152π	M1
	$0.7 \times 1152 = 806.4$	M1dep
	325 × 8 = 2600 Yes	M1A0
	Yes cannot be implied by inequalities	
	Alts 1 and 2	
	325 cm ³ × 8 seen is M1 even if evaluated incorrectly	
	$325^3 \times 8$ seen is M0 unless recovered to 2600	
	Do not allow misreads of the given formula unless recovered	
	eg1 using 12 ² instead of 12 ³	
	eg2 using $\frac{3}{4}$ instead of $\frac{4}{3}$	
	For 0.7 × their 1152 π , do not accept 70% × their 1152 π unless recovered	

Q	Answer	Mark	Comments	
	$8 \div 5$ or $19.2 \div 12$ or $\frac{8}{5}$ or $\frac{19.2}{12}$ or 1.6 or $12 \div 5$ or $19.2 \div 8$ or $\frac{12}{5}$ or $\frac{19.2}{8}$ or 2.4	M1	oe use of a valid pair of side appropriate calculation or valeg 5 ÷ 8 or 0.625 or 5 ÷ 12 or [0.416, 0.417]	
	$8 \div 5 = 19.2 \div 12 \text{ or } \frac{8}{5} = \frac{19.2}{12}$ or $12 \div 5 = 19.2 \div 8 \text{ or } \frac{12}{5} = \frac{19.2}{8}$	A1	oe showing sides are in property of $5 \div 8 = 12 \div 19.2$ or $\frac{5}{12} = \frac{8}{19.2}$	portion
	Additional Guidance			
	For A1 equating may be implied by two calculations or two fractions with correct evaluation			
	eg $8 \div 5 = 19.2 \div 12$ is implied by $8 = 5 \times 1.6$ and $19.2 = 12 \times 1.6$			M1A1
12	For A1 equating may be implied by calculations			
	eg1 $8 \div 5 = 19.2 \div 12$ is implied by $8 \div 5 = 1.6$ and $12 \times 1.6 = 19.2$			M1A1
	eg2 8 ÷ 5 = 19.2 ÷ 12 is implied by $\frac{8}{5} \times 12 = 19.2$			M1A1
	5 × 19.2 = 8 × 12			M1A1
	$5 \times 19.2 = 96$ and $8 \times 12 = 96$			M1A1
	Non-contradictory working can be igned eg correct response along with area		าร	M1A1
	Ignore words eg references to scale	factors, e	nlargement, angles	
	Working on diagrams may be seen eg1 Arrows or lines from 5 to 8 and 12 to 19.2 with × 1.6 on them eg2 Arrows or lines from 5 to 8 and 12 to 19.2 with 1.6 on them Arrows or lines must unambiguously link relevant numbers			M1A1 M1A0
	For $8 \div 5$ or $\frac{8}{5}$ allow $8 : 5$ etc			

Q	Answer	Mark	Comments		
	$80 \times x$ or $80x$ or $x \times 80$ or $x80$ or $x \div 60$ or $\frac{x}{60}$ or $\frac{1}{60}x$ or $x \div \frac{1}{60}$ or $80 \div 60$ or $\frac{80}{60}$	M1	teabags per hour boxes per minute		
	$\frac{80x}{60} \left(= \frac{4x}{3} \right)$ or $80 \div 60 \times x \left(= \frac{4x}{3} \right)$	A1	oe showing 80 and 60 and $x = \frac{80 \times x}{60} \left(= \frac{4x}{3} \right)$ or $x = \frac{80}{60}$ or $x = \frac{80}{60} \times x \left(= \frac{4x}{3} \right)$ or $x = \frac{80}{60} \times x = \frac{4x}{3}$	$\left(=\frac{4x}{3}\right)$	
	Ade	ditional G	Buidance		
	M1 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts				
13	Do not allow M1 if only seen embedd calculation eg $80x \times 4 = 320x$	ed in an i	ncorrect expression or	MO	
	$60 \times \frac{4x}{3} = 80x$ (M1 allowed as $80x$ is not embedded in an incorrect expression or calculation, A0 because using the given answer)			M1A0	
	Condone $x = 80 \div 60$			M1A0	
	$\frac{80x}{60} \left(= \frac{4x}{3} \right)$			M1A1	
	$\frac{80}{60} = \frac{4}{3} \text{ and } \frac{4}{3} \times x \left(= \frac{4x}{3} \right)$			M1A1	
	$\frac{80}{60} = \frac{4}{3}$ and $\frac{4x}{3}$			M1A0	
	No equivalents allowed for M1				
	Ignore units				
	Condone 1.33() for $\frac{4}{3}$				
	Ignore non-contradictory working after	er M1A1 s	een		

Q	Answer	Mark	Comments
	Alternative method 1 Works out by with hourly		ate of the percentage of employees than £17
	32 ÷ 2 or 16	M1	oe implied by 41 or 82
	$(15 + 10 + \text{their } 16) \div 123$ or $41 \div 123$ or $\frac{1}{3}$ or $0.33()$ or $(66 + \text{their } 16) \div 123$ or $82 \div 123$ or $\frac{2}{3}$ or $0.66()$ or 0.67	M1dep	oe eg (123 – 66 – their 16) ÷ 123 or 13(.0)(%) + [12, 12.2](%) + 8(.1)(%)
14(a)	33(.3)(%)	A1	oe eg 0.33(3) and 0.3 allow 33.2(%) from 13(%) + 12.2(%) + 8(%) SC3 37 (or 36.9) and explains that a minimum of 12 of 32 people earn more than £17
	•		nate of the number of employees with hourly with 30% of number of employees
	32 ÷ 2 or 16	M1	oe implied by 41 or 82
	0.3 × 123 or 36.9 or 0.7 × 123 or 86.1	M1	oe accept 36 or 37 for 36.9 accept 86 or 87 for 86.1
	41 and 36.9 or 82 and 86.1	A1	accept 36 or 37 for 36.9 accept 86 or 87 for 86.1 SC3 37 (or 36.9) and explains that a minimum of 12 of 32 people earn more than £17

Question 14(a) continues on the next page

	Alternative method 3 Shows that	a value o	f x gives a percentage > 30%	
	$(15 + 10 + x) \div 123$	M2	oe eg (25 + x) ÷ 123 must see 15 and 10 or 25	
	where $12 \leqslant x \leqslant 32$ $(15 + 10 + x) \div 123$ where $12 \leqslant x \leqslant 32$ and evaluates	A1	evaluations rounded or truncated to nearest integer or better SC3 37 (or 36.9) and explains that a minimum of 12 of 32 people earn more than £17	
	$(15 + 10 + x) \div 123 \times 100$ correctly			
	Alternative method 4 Shows a nu	mber of e	employees that gives a percentage > 30%	
	0.3 × 123 or 36.9	M1	oe accept 36 or 37 for 36.9	
14(a)	15 + 10 + x or $25 + xwhere 12 \le x \le 32$	M1dep	must see 15 and 10 or 25	
cont	36.9 and evaluates $15 + 10 + x$ correctly where $12 \le x \le 32$	A1	accept 36 or 37 for 36.9 SC3 37 (or 36.9) and explains that a minimum of 12 of 32 people earn more than £17	
	Ad	ditional (Guidance	
	Up to M2 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts			
	16 may be seen by the table			
	Alt 1 67% needs further explanation to score A1			
	Ignore irrelevant working in an otherwise fully correct response			
	For the SC3, minimum of 12 may be implied by an explanation that $10 + 15 + x$ is at least 37 or $25 + x$ is at least 37			
	Responses involving interpolation sho	ould be es	scalated	

Q	Answer	Mark	Comments	
	Valid reason B1 eg all employees in the second may earn less than £17			
	Ad	ditional G	Guidance	
	Fewer than 12 employees could earn	more tha	n £17 per hour	B1
	Only 10 might get more than £17 in s (10 could be replaced by any integer			B1
	More than 12 in group 2 earn less that	an £17		В0
	Everyone in second group may earn	14 or 15 o	or 16	B1
	21 people may earn between £14 and £17 (21 could be replaced by any integer from 22 to 32 inclusive)			
	More people may earn between £14	and £17		В0
14(b)	People in the 14 to 20 group aren't evenly distributed			В0
	Not everyone in 14 – 20 earns more than £17			
	Not many in second group may get more than £17			В0
	Some of second group may get more than £17			В0
	14 to 20 includes people who get less	s than £17	7	В0
	2nd group includes some getting less than 17	s than 17	and some getting more	В0
	We don't know what each person ear	rns		B1
	We don't know how many of 2nd group earn less than £17 per hour			B1
	Under £17 isn't in the data			B1
	Grouped data or it is only an estimate or using midpoints or data is wrong			В0
	Ignore irrelevant working but do not ig	gnore inco	orrect working	

Q	Answer	Mark	Comments	
	12 × 66 or 792 and 17 × 32 or 544 and 30 × 15 or 450 and 70 × 10 or 700	M1	oe implied by 2486 may be seen by the table allow one product or fx value incorrect	e to be
	(their 792 + their 544 + their 450 + their 700) ÷ 123 or 2486 ÷ 123	M1dep A1	oe eg $\frac{792 + 544 + 450 + 700}{66 + 32 + 15 + 10}$ condone bracket error if work eg $792 + 544 + 450 + 700 \div$ allow 20.20 if M2 seen and r	king seen 123
14(c)	Additional Guidance			
	Four values with three correct from 792, 544, 450, 700 can score up to M2 if they add and divide by 123			
	Correct products or values seen but a	МОМО		
	20.2(1) in working with answer give	en as the i	nterval 20 ≤ p < 40	M2A0
	Ignore any references to statement B eg £20.21 which makes B wrong			M2A1
	Condone 20.2, 20.21 etc for 20.211			
	Do not allow rounding of any of their 4 values in the second mark eg 792 544 450 700 (800 + 544 + 450 + 700) ÷ 123			M1 M0

Q	Answer	Mark	Comments	
	Valid reason referring to the distribution	B1	eg 98 employees earned below	£20
	Ad	ditional G	Guidance	
	Less than a half earned more than £2	20		B1
	Over a half earned between £10 and	£14		B1
	Lots earned 10 to 14			В0
	Only 25 people were over £20			B1
	25 people were over £20			B0
	Not many earned more than the mea	n		B0
	Most earned less than £20			B1
	Some earned less than the mean, some earned more			B0
	Mean is not a real amount of money			B0
444.15	Median is between £10 and £14			B1
14(d)	Median is better or mode is better			B0
	Modal class is $10 \leqslant p < 14$			B1
	The mode is between £10 and £14 (condone mode as modal class)			B1
	We don't know what each person earns			В0
	Grouped data or it is only an estimate or using midpoints or data is wrong			В0
	The range is large			B0
	The data has extreme values or outli	ers or and	malous values	B1
	The data is (positively) skewed			B1
	The distribution is not symmetrical			B1
	The distribution is not evenly spread			B1
	Not representative			B0
	Lots of low values or high values can	make the	mean inaccurate	B0
	Ignore irrelevant working but do not ignore incorrect working			

Q	Answer	Mark	Comments		
	$2x^3 - 18x^2y + 5x^2y - 45xy^2$	M1	exactly 4 terms with 3 correct terms in any order may be seen in a grid implied by $2x^3 - 13x^2y$ with a term or $-13x^2y - 45xy^2$ with a term	one other	
	$2x^3 - 18x^2y + 5x^2y - 45xy^2$ or $2x^3 - 13x^2y - 45xy^2$	A1	terms in any order do not allow if only seen in a	grid	
	Additional Guidance				
	A correct term includes the sign (in a grid allow eg $5x^2y$ for $+5x^2y$)				
15	Condone four correct terms followed by incorrect simplification of x^2y terms, otherwise do not allow further incorrect work $eg1 \ 2x^3 - 18x^2y + 5x^2y - 45xy^2 = 2x^3 + 13x^2y - 45xy^2$ $eg2 \ 2x^3 - 18x^2y + 5x^2y - 45xy^2 = 36x^5y + 5x^2y - 45xy^2$				
			,		
	Allow equivalent fully simplified terms $= eg 5x^2y$ may be seen as $5yx^2$ For M1 allow coefficients to be incorrectly positioned $= eg x^32 - 18x^2y + y5x^2 - 45xy^2$				
	$2x^3 + -18x^2y + 5x^2y + -45xy^2 \;\; \text{has 4 correct terms but needs further simplification to score A1}$				
	Terms must be processed eg do not allow $x^2 \times 2x$ for $2x^3$				

Q	Answer	Mark	Comments		
	13 = 7a - 1 or $(a =) 2$	M1	– 1		
	$(y =) \frac{3}{5} x \dots$ or (gradient B =) $\frac{3}{5}$	oe eg (gradient B =) 0.6 allow (y =) $\frac{3x+4}{5}$			
	gradient A = 2 and gradient B = $\frac{3}{5}$	A1	oe eg $2 > \frac{3}{5}$ condone $2x > \frac{3}{5}x$		
	Ado	ditional G	Guidance		
	Up to M2 may be awarded for correct answer, even if this is seen amongst				
16	Condone incorrect y-intercept $eg \ a=2 \qquad y=\frac{3}{5}x+4$ $gradient \ A=2 \qquad gradient \ B=\frac{3}{5}$	M1M1 A1			
	It must be clear that the values 2 and question to award A1				
	eg1 gradient A = 2 and gradient B =	statement needed)	M2A1		
	eg2 $a = 2$ $y = \frac{3}{5}x + \frac{4}{5}$			M2A0	
	eg3 $y = 2x - 1$ and $y = \frac{3}{5}x + \frac{4}{5}$	2 is grea	ter than $\frac{3}{5}$	M2A1	
	eg4 $y = 2x - 1$ and $y = \frac{3}{5}x + \frac{4}{5}$ gradient of A > gradient of B				
	13 = 7x - 1 or $x = 2$ must be recover	ered to aw	ard 1st M1		

Q	Answer	Mark	Comments			
	Alternative method 1 Works out A	C and use	es it in triangle ABC			
	$\cos 37 = \frac{AC}{4}$	M1	oe eg sin $53 = \frac{AC}{4}$ allow [0.798, 0.8] for cos 37 or sin 53			
	(AC =) 4 × cos 37 or (AC =) [3.19, 3.2]	M1dep	oe eg (AC =) 4 × sin 53 allow [0.798, 0.8] for cos 37 or sin 53 may be seen on diagram			
	$\sin x = \frac{\text{their} [3.19, 3.2]}{9.3}$ or $(x =) \sin^{-1} [0.34, 0.3441]$	M1dep	oe eg cos x = $\frac{\sqrt{9.3^2 - \text{their } [3.19, 3.2]^2}}{9.3}$ or (x =) 90 - cos ⁻¹ [0.34, 0.3441]			
17	[19.87, 20.13]	A1				
	Alternative method 2 Works out angle ADC and uses it in triangle ABD					
	(angle ADC =) 90 – 37 or (angle ADC =) 53	M1	oe eg (angle ADC =) 180 – 90 – 37 may be seen on diagram			
	$\frac{\sin x}{4} = \frac{\sin (90 - 37)}{9.3}$	M1dep	oe eg $\frac{4}{\sin x} = \frac{9.3}{\sin 53}$			
	$(\sin x =) \frac{\sin (90-37)}{9.3} \times 4$	M1dep	oe			
	or $(x =) \sin^{-1} [0.34, 0.3441]$					
	[19.87, 20.13]	A1				

Question 17 continues on the next page

	Additional Guidance				
	Up to M3 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts				
	Allow any unambiguous notation for angles eg allow B for x				
	Alt 1 Allow any unambiguous notation for AC eg y (condone x if clearly referring to AC)				
17 cont	Alt 1 1st M1 must be an equation where AC is the only variable				
Cont	eg $AC^2 + (4 \sin 37)^2 = 4^2$	M1			
	Alt 1 A calculation that leads to AC scores M1M1				
	eg $\sqrt{4^2 - (4 \sin 37)^2}$	M1M1			
	Alt 1 3rd M1 must have sin x (or cos x) as the subject or be a calculation that leads to x				
	Alt 2 53 only marked at angle BAC on diagram	MO			

Q	Answer	Mark	Comments			
	$xy = x + 8$ or $y = 1 + \frac{8}{x}$	M1	on split into $\frac{8}{x}$			
	xy - x = 8 or $x(y - 1) = 8$	M1dep	oe equation with x terms coll eg $x - xy = -8$	ected		
40	$x = \frac{8}{y-1}$ or $x = \frac{-8}{1-y}$ oe equation with x the sum of $x = \frac{8}{1-y}$ of					
18	Additional Guidance					
	Up to M2 may be awarded for correct answer, even if this is seen amongst	awarded for correct work with no answer or incorrect is is seen amongst multiple attempts				
	Correct answer in working with answ	er repeate	ed on answer line without x =			
	eg $x = \frac{8}{y-1}$ seen in working with answer $\frac{8}{y-1}$					
	Do not allow incorrect simplification after correct answer seen					
	eg $x = \frac{8}{y-1}$ $x = \frac{8}{y} - 8$					
	xy - x - 8 = 0 with no further correct	working		M1M0		

Q	Answer	Mark	Comments		
	Alternative method 1 nth term = a	$an^2 + bn +$	- c		
	(second differences =) 10 or $a = 5$ or $5n^2$	M1	second difference seen at least once and not contradicted by a different value unless recovered		
			may be seen by the sequence		
	$3-5 \times 1^2$ and $20-5 \times 2^2$ or -2 and 0		oe subtraction of $5n^2$ from any two consecutive terms		
	or $b=2$ or $2n$	M1dep	eg $47 - 5 \times 3^2$ and $84 - 5 \times 4^2$ or 2 and 4		
			implied by $5n^2 + 2n \dots$		
	$5 \times 1^2 + 2 \times 1 + c = 3$		oe substitution of $a = 5$ and $b = 2$		
	or $5 + 2 + c = 3$		eg $5 \times 2^2 + 2 \times 2 + c = 20$		
	or	M1dep	or		
	$(2n + c \text{ and}) 2 \times 1 + c = -2$		oe use of $2n + c$ and another term		
			eg $(2n + c \text{ and}) 2 \times 2 + c = 0$		
19	$5n^2 + 2n - 4$	A1	terms in any order		
			SC2 $a = 5$ and $c = -4$		
			SC1 c = -4		
	Alternative method 2 $nth term = an^2 + bn + c$				
	(second differences =) 10 or $a = 5$ or $5n^2$	M1	second difference seen at least once and not contradicted by a different value unless recovered		
			may be seen by the sequence		
	$3 \times 5 + b = 17$		oe substitution of $a = 5$		
	or	M1dep	eg $5 \times 5 + b = 27$		
	b = 2 or 2n		implied by $5n^2 + 2n \dots$		
	$5 \times 1^2 + 2 \times 1 + c = 3$	B 4 4 1	oe substitution of $a = 5$ and $b = 2$		
	or $5 + 2 + c = 3$	M1dep	eg $5 \times 2^2 + 2 \times 2 + c = 20$		
	$5n^2 + 2n - 4$		terms in any order		
		A1	SC2 $a = 5$ and $c = -4$		
			SC1 c = -4		

Question 19 continues on the next page

	Alternative method 3 $nth term = an^2 + bn + c$					
	Any 3 of a + b + c = 3 4a + 2b + c = 20 9a + 3b + c = 47 16a + 4b + c = 84	M1	oe 3 equations			
	3a + b = 17 and $5a + b = 27or a = 5 and b = 2$	M1dep	oe pair of equations in a and b eg $8a+2b=44$ and $15a+3b=81$ implied by $5n^2+2n$			
	$5 \times 1^2 + 2 \times 1 + c = 3$ or $5 + 2 + c = 3$	oe substitution of $a = 5$ and eg $5 \times 2^2 + 2 \times 2 + c = 20$	1 b = 2			
19	$5n^2 + 2n - 4$	A1	terms in any order SC2 $a = 5$ and $c = -4$ SC1 $c = -4$			
cont	Additional Guidance					
	Up to M3 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts					
	Second differences = 10 scores M1 e					
	Condone $n = 5n^2 + 2n - 4$ or $5n^2 + 2n - 4 = 0$					
	Condone working in a different variable $eg 5x^2 + 2x - 4$					
	The 3rd method mark cannot be implied $c=-4$ is only awarded M3 if the ρ		wo method marks are seen			
	Alt 1 2nd M1 cannot be awarded for recovered					
	SC2 or SC1 can be awarded from wo					
	SC2 or SC1 can be implied by a qua					
	eg1 answer 5n ² + 6n – 4			SC2		
	eg2 answer $10n^2 + 3n - 4$			SC1		

Q	Answer	Mark	Comments		
	65	B1			
20(a)	Additional Guidance				
	65 unambiguously linked to x on diagram with answer line blank				

Q	Answer	Mark	Comments		
	It is greater than the answer to part (a)	B1			
20(b)	Ado	ditional G	Guidance		

Q	Answer	Mark	Comments	
	No and valid statement	B1	eg no it is angle ACD that is 70°	
	Ad	ditional G	Guidance	
	Angles may be seen on the diagram			
	No may be implied			
	eg1 angle ADC is not 70		B1	
	eg2 angle y is 55		B1	
	Allow unambiguous indication of ang	les		
	eg y and D are both 55 so he is wron	B1		
	No and angle ADC = 55°	B1		
20(c)	y is not 70 so no	B1		
	No, neither angle is correct	B1		
	No, he thinks AB and DC are parallel	B1		
	No, he's used alternate angles	B1		
	It should say alternate angles (no in	B1		
	He has made mistakes	В0		
	He used the alternate segment theorem	ectly B1		
	Ignore irrelevant working but do not i	orrect working		
	eg No it is angle ACD that is 70° and	s 65 B0		
	Responses saying he is correct		В0	

Q	Answer	Mark	Comments
	Alternative method 1		
	560 ÷ 500 or 1.12	M1	oe
	³ √their 1.12 or [1.038, 1.0385]		may be implied
	or [3.8, 3.85]	M1dep	eg $\frac{r}{100}$ = [0.038, 0.0385]
	3.9	A1	
	Alternative method 2		
21	Trial of the form $500 \times x^3$ with $1 < x \le 1.1$ and correct evaluation	M1	allow correct evaluation truncated or rounded to nearest integer or better allow working year by year value of x used must be seen
	Two trials of the form $500 \times x^3$ each with $1 < x \le 1.1$ and correct evaluations, one with answer < 560 and one with answer > 560	M1dep	allow correct evaluations truncated or rounded to nearest integer or better allow working year by year values of x used must be seen
	3.9	A1	

Question 21 continues on the next page

	Additional Guidance							
	Up to M2 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts							
	1.0	.01	515.1505		1.0385	560.0019083		
	1.0	.02	530.604		1.039	560.8111595		
	1.0	.03	546.3635		1.04	562.432		
	1.0	.038	559.193436		1.05	578.8125		
					1.06	595.508		
	1.07 612.5215 1.08 629.856							
	1.09 647.5145							
	1.1 665.5							
21 cont	eg of accepted values For 578.8125 allow 578, 579, 578.8, 578.81, 578.812, 578.813						13	
	Alt 2 example of working year by year (allow intermediate values to be truncated or rounded to the nearest penny, also allow if given to the next penny) $500 \times 1.035 = 517.5$ $517.5 \times 1.035 = 535.6125 \text{ (allow } 535.61 \text{ or } 535.62)$ $535.61 \times 1.035 = 554.35635$							
	Incorrect	t trials	and evaluations	s cai	n be ignor	ed		
	3.9 from incorrect working $eg 560 - 500 = 60 \qquad \sqrt[3]{60} = 3.9$ M						MOMOAO	
	Wrong a	answer	(eg 4) with no c	corre	ect method	d seen		M0M0A0
			eme that favours 88 ³ scores M1M					
	560 - 50 500	00	h no further corr					МОМО

Q	Answer	Mark	Comments	
	(x ₂ =) 4.1(0)	B1		
	(x ₃ =) [4.176, 4.178] or 4.18	B1ft	ft their 4.1(0) rounded to at least 2 dp SC1 $x_2 = [4.176, 4.178]$ or 4.18	
	Additional Guidance			
22(a)	Allow second B1 for $x_3 = 4.2$ with acceptable answer seen in working			
	x ₂ = 7.8			В0
	$x_3 = 6.59$			B1ft
	SC1 is for using $x_0 = 4$			

Q	Answer	Mark	Comments
	4.25 < value ≤ 4.39	B1	ignore any iteration number
22(b)	Additional Guidance		
	Ignore other values if B1 response se	en	

Q	Answer	Mark	Comments	
	$\frac{3}{8}$ (x) $\frac{2}{7}$ or $\frac{6}{56}$ or $\frac{3}{28}$	M1	oe fraction, decimal or percentage allow $\frac{2}{7}$ to be [0.285, 0.286] or [28.5, 28.6]% allow $\frac{6}{56}$ to be [0.107, 0.107143] or [10.7, 10.7143]% may be seen on a tree diagram allow 6 out of 56	
23	$\frac{1}{7}$ (x) $\frac{1}{4}$ (x 2) or $\frac{1}{28}$ (x 2) or $\frac{2}{28}$ or $\frac{1}{14}$	M1	oe fraction, decimal or percentage allow $\frac{1}{7}$ to be $[0.142, 0.143]$ or $[14.2, 14.3]\%$ allow $\frac{1}{28}$ to be $[0.035, 0.036]$ or $[3.5, 3.6]\%$ allow $\frac{2}{28}$ to be $[0.071, 0.07143]$ or $[7.1, 7.143]\%$ may be seen on a tree diagram allow 1 out of 28 or 2 out of 28	
	$\frac{6}{56}$ and $\frac{2}{28}$	A1	oe fractions, decimals or percentages allow 6 out of 56 and 2 out of 28	
	Probabilities in comparable form and Option 1	A1ft	ft their $\frac{6}{56}$ and their $\frac{2}{28}$ with M2A0 correct comparisons include $\frac{3}{28}$ and $\frac{2}{28}$ $\frac{6}{56}$ and $\frac{4}{56}$ 0.107 and 0.071 10.7% and 7.1% 6 out of 56 and 4 out of 56	

Question 23 continues on the next page

	Additional Guidance Up to M2 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts					
	3 ways to win in Option 1 and 2 ways to win in Option 2 so Option 1					
23 cont	$\frac{3}{8} \times \frac{2}{7} = \frac{6}{56}$ $\frac{1}{7} \times \frac{1}{4} = \frac{1}{28}$	M1M1				
	$\frac{6}{56}$ and $\frac{2}{56}$ and Option 1	A0A1ft				
	Assuming replacement can score a maximum of M0M1A0A0					
	Choosing Option 1 cannot be implied by inequalities					

Q	Answer	Mark	Comments	
	64.5 or 65.5 or 25 or 35	M1	allow 65.49 or 34.9 implied by 4160.25 or 4290 or 8320.5 or 8580.5 or 625 or 1225	.25
	$2 \times \text{their } 65.5^2 - \text{their } 25^2$ or $2 \times 4290.25 - 625$ or $8580.5 - 625$	M1	their 65.5 must be (65, 66] their 25 must be [20, 30)	
	65.5 and 25 and 7955.5			
24	Additional Guidance			
	Up to M2 may be awarded for correct answer, even if this is seen amongst			
If multiple attempts are seen and one is fully correct, the correct one must be unambiguously selected (eg ticked or circled) to award A1 if the answer line is blank				
	Note that M0M1A0 is possible eg $2 \times 66^2 - 21^2$			MOM1A0
	Condone eg 65.50 for 65.5			

Q	Answer	Mark	Comments		
	$\frac{(x-5)(x+2)}{(x-2)(x+2)}$ and $\frac{(x+5)(x-2)}{(x+2)(x-2)}$	M1	(x-2)(x+2) or x²-2x+2x be seen (expansion may be signid) brackets in any order if the brackets are not shown numerators, expansions must may be seen as a single fraction.	for the	
	$x^2 - 5x + 2x - 10$ or $x^2 - 3x - 10$ or $x^2 + 5x - 2x - 10$ or $x^2 + 3x - 10$	M1	correct expansion of $(x - 5)(x - 2)$ or $(x + 5)(x - 2)$ ignore denominators may be seen in a grid implied by $2x^2 - 20$ if no erro expansions		
	M2 seen with no errors $ \text{allow M2 see} $ and $ \frac{2x^2 - 20}{x^2 - 4} $ $ \text{A1} \text{and } a = 2 \text{ b} $			en with no errors $o = 20$	
25	Additional Guidance				
	Missing brackets must be recovered but condone missing closing bracket at the end of a numerator or denominator $ eg \frac{(x-5)(x+2)}{(x-2)(x+2)} + \frac{(x+5)(x-2)}{(x+2)(x-2)} $ 2nd M1 is awarded for four correct terms even if subsequently simplified			1st M1	
	incorrectly		n oubcoquonity cimpiniou		
	For terms seen in a grid, signs must l	be correct	(allow eg 2x for + 2x)		
	For 1st M1 allow multiplication signs				
	After M2A1 ignore incorrect values stated eg a = 2 b = -20				
	$\frac{2x^2 - 20}{x^2 - 4}$ may come from wrong wor	king or inc	complete working		
	eg $\frac{(x-5)(x+2)}{(x-2)(x+2)} + \frac{(x+5)(x-2)}{(x+2)(x-2)}$			M1	
	$\frac{x^2 - 10 + x^2 - 10}{x^2 - 4} = \frac{2x^2 - 20}{x^2 - 4}$			M0A0	

Q	Answer	Mark	Comments	
	(0, 2)	B1		
26(a)	Ac	ditional (Guidance	

Q	Answer	Mark	Comments	
	$y = -x^2$	B1	oe equation eg $x^2 = -y$	
	Additional Guidance			
26(b)	$y = -1x^2 + 0$			B1
	$y = -(x^2)$			B1
	$-x^2$			В0

Q	Answer	Mark	Comments	
	Translation	B1	allow eg translate(d)	
	$\begin{pmatrix} -3\\0 \end{pmatrix}$	B1		
	Ad	lditional (Guidance	
	Do not accept a vector given as coor 'fraction line'	dinates or	with missing brackets or with	
	Translation from (0, 0)			B1B0
	Translation horizontally by 3			B1B0
26(c)	Translate 3 to the left and 3 down			B1B0
	Reflect by $\begin{pmatrix} -3\\0 \end{pmatrix}$			B0B1
	Giving a combined transformation is	B0B0		
	Rotate by $\begin{pmatrix} -3\\0 \end{pmatrix}$ and reflect in the x-axis			B0B0
	Ignore references to movement if ve	ctor is cor	rect	
	eg Move to the right by $\begin{pmatrix} -3\\0 \end{pmatrix}$			B0B1