Paper 1MA1: 3H			
Question	Working	Answer	Notes
1		171	P1 for process to find one share P1 for process to find total A1 cao
2		plan	C1 a partially correct plan C1 correct plan
3		$t=3(y+2 a)$	M1 adding $2 a$ to both sides or multiplying each term by 3 A1 $t=3(y+2 a)$ or $t=3 y+6 a$
4		$7.15 \leq x<7.25$	B1 for 7.15 and 7.25 B1 cao
$5 \quad \text { (a) }$ (b)		improvement explanation	C1 appropriate improvement eg do not have axes starting at $(0,0)$ C1 explanation eg pine cone has a very short width for its length
$6 \quad \text { (a) }$ (b)		1.95 D	M1 method to find one temperature eg $4500 \div 1200$ M1 for complete method A1 cao B1 cao

Paper 1MA1:3H				
Question	Working	Answer		Notes

| Paper 1MA1: 3H | | | |
| :--- | :--- | :--- | :--- | :--- |
| Question | Working | Answer | Notes |

Paper 1MA1: 3H			
Question	Working	Answer	Notes
14 (a)	$\begin{aligned} & 81 \div 2=40.5 \\ & 90 \text { to } 105 \text { is } 29 \end{aligned}$	histogram	C1 for 2 correct bars of different widths or at least 3 correct frequency densities C1 all bars in correct proportions or 4 correct bars with axes scaled and labelled C1 fully correct histogram with axes scaled and labelled
		108.2	C1 for $81 \div 2=40.5$ and $11.5 \div 18 \times 5$ ($=3.19$..) C1 For answer in range 108 to 109
15		shown	$\text { C1 for } \frac{a(b+1)-a}{(b+1)^{2}} \text { or } \frac{a(b+1)^{2}-a(b+1)}{(b+1)^{3}} \text { oe }$
			C1 complete chain of reasoning
16		18.2	M1 for $\frac{260}{360} \times \pi \times 8$ oe or $\frac{100}{360} \times \pi \times 8$ oe A1 for 18.1 to 18.2
17		proof	$\begin{array}{\|ll\|} \hline \text { C1 } & \text { starts proof eg } n(n+1) \text { or }(n-1) \times n \\ \text { C1 } & n(n+1)+n+1 \text { or }(n-1) \times n+n \\ \text { C1 } & \text { for convincing proof including }(n+1)^{2} \text { or } n^{2} \end{array}$

Paper 1MA1: 3H			
Question	Working	Answer	Notes
18 (a) (b)	values $0,2,5,9,15,24$	86 overestimate with reason	M1 for starting to find area under curve M1 for method to find the area under the curve between $t=0$ and $t=10$ (and at least 2 areas) A1 C1 for overestimate and appropriate reason linked to method eg area between trapeziums and curve also included
19		proof leading to $\frac{7}{22}$	M1 for finding two correct recurring decimals that when subtracted would result in a terminating decimal or integer with intention to subtract eg $x=0.31818 \ldots, 100 x=31.81818 \ldots$ A1 fully correct proof
20		$\frac{1}{4}$	P1 starts process eg $\overrightarrow{A B}=2 \mathbf{b}-2 \mathbf{a}$ P1 process to find $\overrightarrow{A P}$ or $\overrightarrow{B P}$ P1 complete process to find $\overrightarrow{O P}$ A1 for $\frac{1}{4}$ oe

Paper 1MA1: 3H		Answer	Notes
Question	Working		
21		10.4	```P1 starts process by using cosine rule to find CD eg (CD) }\mp@subsup{)}{}{2}=4.\mp@subsup{9}{}{2}+3.\mp@subsup{8}{}{2}-2\times4.9\times3.8\times\operatorname{cos}80(31.98..)```
			P1 uses sine rule to find angle $A C D$ or angle $A D C$ eg $\frac{\sin C}{3.8}=\frac{\sin 80}{5.655^{\prime}}$ or $\frac{\sin D}{4.9}=\frac{\sin 80}{5.655^{\prime}}$
			P1 uses sine rule to find $B C$ or $B D$ $\text { eg } \frac{B D}{\sin 25}=\frac{' 5.655^{\prime}}{\sin 33.6^{\prime}}$
			P1 process to find area eg $1 / 2 a b \sin C$
			A1 for 10.4 to 10.43

