Q 1 mark Sub

M1

$$0 = u - 9.8 \times 3$$

 $u = 29.4 \text{ so } 29.4 \text{ m s}^{-1}$

 $s = 0.5 \times 9.8 \times 9 = 44.1$ so 44.1 m

Signs consistent

A1

M1*uvast* leading to *s* with t = 3 or t = 6 or **their** u

uvast leading to u with t = 3 or t = 6

FT **their** u if used with t = 3. Signs consistent. F1 Award for 44.1, 132.3 or 176.4 seen.

[Award maximum of 3 if one answer wrong]

Q 2 mark Sub

(i)
$$\sqrt{(-6)^2 + 13^2} = 14.31782...$$

so 14.3 N (3 s. f.)

so 14.3 N (3 s. f.)

Accept $\sqrt{-6^2 + 13^2}$ M1

A1

(ii) Resultant is $\binom{-6}{13} - \binom{-3}{5} = \binom{-3}{8}$

Require $270 + \arctan \frac{8}{3}$

so 339.4439...° so 339°

B1 May not be explicit. If diagram used it must have correct orientation. Give if final angle correct.

Use of $\arctan\left(\pm\frac{8}{3}\right)$ or $\arctan\left(\pm\frac{3}{8}\right)$ ($\pm20.6^{\circ}$ or M1 $\pm 69.4^{\circ}$) or equivalent on **their** resultant

A1 cao. Do not accept -21°.

3

3 8

4

2

(iii)
$$\begin{pmatrix} -3 \\ 5 \end{pmatrix} = 5\mathbf{a}$$

so $(-0.6\,\mathbf{i} + \mathbf{j})$ m s⁻²

change in velocity is $(-6\mathbf{i} + 10\mathbf{j})$ m s⁻¹

M1Use of N2L with accn used in vector form

A1 Any form. Units not required. isw.

F1 10a seen. Units not required. Must be a vector.

[SC1 for $a = \sqrt{3^2 + 5^2} / 5 = 1.17$]

Q 3		mark		Sub
(i)	$F = 14000 \times 0.25$	M1	Use of N2L . Allow $F = mga$ and wrong mass. No	
	so 3500 N	A1	extra forces.	2
(ii)	4000 - R = 3500 so 500 N	B1	FT F from (i). Condone negative answer.	1
(iii)	$1150 - R_{\rm T} = 4000 \times 0.25$	M1	N2L applied to truck (or engine) using all forces required. No extras. Correct mass. Do not allow use	
	so 150 N	A1	of $F = mga$. Allow sign errors. cao	2
(iv)	either Component of weight down slope is	M1	Attempt to find cpt of weight (allow wrong mass). Accept $sin \leftrightarrow cos$. Accept use of $m sin \theta$.	
	Extra driving force is cpt of mg down slope	M1	May be implied. Correct mass. No extra forces. Must have resolved weight component. Allow sin ↔ cos	
	14000 <i>g</i> sin 3°			
	= 14000×9.8×0.0523359 = 7180.49 so 7180 N (3 s. f.)	A1		
	or	M1	Attempt to find cpt of weight (allow wrong mass).	
	$D - 500 - 14000g \sin 3 = 14000 \times 0.25$	M1	Accept $\sin \leftrightarrow \cos$. Accept use of $m \sin \theta$. N2L with all terms present with correct signs and mass. No extras. FT 500 N. Accept their 500 + 150 for resistance. Must have resolved weight component.	
	<i>D</i> = 11180.49 so extra is 7180 N (3 s. f.)	A1	Allow $\sin \leftrightarrow \cos .$ Must be the extra force.	3 8

Q4 mark Sub (i) either Need **j** cpt 0 so $18t^2 - 1 = 0$ M1Need not solve $\Rightarrow t^2 = \frac{1}{18}$. Only one root as t > 0E1 Must establish only one of the two roots is valid Establish sign change in j cpt **B**1 Establish only one root **B**1 2 M1(ii) v = 3 i + 36t jDifferentiate. Allow i or j omitted **A**1 Need i cpt 0 and this never happens E1 Clear explanation. Accept 'i cpt always there' or equiv 3 (iii) x = 3t and $y = 18t^2 - 1$ B1 Award for these two expressions seen. Eliminate t to give $y = 18\left(\frac{x}{3}\right)^2 - 1$ t properly eliminated. Accept any form and brackets M1missing so $y = 2x^2 - 1$ **A**1 cao 3 8 Q 5 mark Sub (i) $0^2 = V^2 - 2 \times 9.8 \times 22.5$ M1Use of appropriate uvast. Give for correct expression $V = 21 \text{ so } 21 \text{ m s}^{-1}$ Clearly shown. Do not allow $v^2 = 0 + 2gs$ without E1 explanation. Accept using V = 21 to show s = 22.5. 2 (ii) $28\sin\theta = 21$ M1Attempt to find angle of projection. Allow $sin \leftrightarrow cos$. so $\theta = 48.59037...$ **A**1 2 (iii) Time to highest point is $\frac{21}{9.8} = \frac{15}{7}$ Or equivalent (time of whole flight) B1 Distance is $2 \times \frac{15}{7} \times 28 \times \cos(\mathbf{their}\,\theta)$.. M1Valid method for horizontal distance. Accept ½ time. Do not accept 28 used for horizontal speed or vertical speed when calculating time. **B**1 Horizontal speed correct

A1

cao]

cao. Accept answers rounding to 79 or 80.

M1* Correct formula used. FT their angle. M1 Dep on *. Correct subst. FT their angle. A2

[If $u^2 \sin 2\theta / g$ used then

[If angle with vertical found in (ii) allow up to full marks in (iii). If $sin \leftrightarrow cos$ allow up to B1 B1 M0 A1]

4 8

79.3725... so 79.4 m (3 s. f.)

Q 6		mark		Sub
(i)	$0.5 \times 2 \times 12 + 0.5 \times 4 \times 12$ so 36 m	M1 A1	Attempt at sum of areas or equivalent. No extra areas.	2
(ii)	$8 - \frac{36}{12} = 5 \text{ seconds}$	B1	cao	1
(iii)	-6 m s^{-2}	M1 B1	Attempt at accn for $0 \le t \le 2$ must be - ve or equivalent	2
(iv)	$58.5 = 12 \times 6 + 0.5 \times a \times 36$ so $a = -0.75$	M1 A1	Use of <i>uvast</i> with 12 and 58.5	2
(v)	$a = -10 + \frac{9}{2}t - \frac{3}{8}t^2$	M1 A1	Differentiation	
	$a(1) = -10 + \frac{9}{2} - \frac{3}{8} = -5.875$	A1	cao	3
(vi)	$s = \int \left(12 - 10t + \frac{9}{4}t^2 - \frac{1}{8}t^3 \right) dt$	M1 A1	Attempt to integrate At least one term correct	
	$=12t-5t^2+\frac{3}{4}t^3-\frac{1}{32}t^4+C$	A1	All correct. Accept $+ C$ omitted	
	s = 0 when $t = 0$ so $C = 0$	A1*	Clearly shown	
	s(8) = 32	A1	cao (award even if A1* is not given)	5
(vii)	either $s(2) = 9.5$ and $s(4) = 8$	B1	Both calculated correctly from their s . No further marks if their $s(2) \le s(4)$	
	Displacement is negative Car going backwards or Evaluate $v(t)$ where $2 < t < 4$ or appeal to	E1 E1	Do <i>not</i> need car going backwards <i>throughout</i> the interval. e.g. $v(3) = -1.125$	
	shape of the graph		No further marks if their $v \ge 0$	
	Velocity is negative Car going backwards	E1 E1	Do <i>not</i> need car going backwards <i>throughout</i> the interval [Award WW2 for 'car going backwards'; WW1 for velocity or displacement negative]	3 18

Q 7		mark		Sub
(i)	$T_{\rm AB} \sin \alpha = 147$	M1	Attempt at resolving. Accept $\sin \leftrightarrow \cos$. Must have <i>T</i> resolved and equated to 147.	
	so $T_{AB} = \frac{147}{0.6}$	B1	Use of 0.6. Accept correct subst for angle in wrong	
	= 245 so 245 N	A1	expression. Only accept answers agreeing to 3 s. f. [Lami: M1 pair of ratios attempted; B1 correct sub;A1]	3
(ii)	$T_{\rm BC} = 245\cos\alpha$	M1	Attempt to resolve 245 and equate to <i>T</i> , or equiv	
	$=245\times0.8=196$	E1	Accept $\sin \leftrightarrow \cos$ Substitution of 0.8 clearly shown [SC1 245×0.8=196] [Lami: M1 pair of ratios attempted; E1]	2
(iii)	Geometry of A, B and C and weight of B the	E1	Mention of two of: same weight: same direction AB: same direction BC	
	same and these determine the tension	E1	Specific mention of same geometry & weight or recognition of same force diagram	2
(iv)	196 N T 90 N	B1 B1	No extra forces. Correct orientation and arrows 'T' 196 and 90 labelled. Accept 'tension' written out.	
	either Realise that 196 N and 90 N are horiz and vert forces where resultant has magnitude and line of action of the tension	M1	Allow for only β or T attempted	
	$\tan \beta = 90/196$ $\beta = 24.6638$ so 24.7 (3 s. f.)	B1	Use of arctan (196/90) or arctan (90/196) or equiv	
	$T = \sqrt{196^2 + 90^2}$ T = 215.675 so 216 N (3 s. f.)	A1 M1 E1	Use of Pythagoras	
	$\uparrow T \sin \beta - 90 = 0$	B1	Allow if $T = 216$ assumed	
	$\to T\cos\beta - 196 = 0$	B1	Allow if $T = 216$ assumed	
	Solving $\tan \beta = \frac{90}{196} = 0.45918$	M1	Eliminating T , or	
	β = 24.6638 so 24.7 (3 s. f.) T = 215.675 so 216 N (3 s. f.)	A1 E1	[If $T = 216$ assumed, B1 for β ; B1 for check in 2^{nd} equation; E0]	7
(v)	Tension on block is 215.675 N (pulley is smooth and string is light)	B1	May be implied. Reasons not required.	
	$M \times 9.8 \times \sin 40 = 215.675 + 20$	M1	Equating their tension on the block unresolved \pm 20 to weight component. If equation in any other direction, normal reaction must be present.	
	M = 37.4128 so 37.4 (3 s. f.)	A1 A1	Correct Accept answers rounding to 37 and 38	4 18