

Mark Scheme (Results)

January 2020

Pearson Edexcel International GCSE in Chemistry (4CH1) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

January 2020 Publications Code 4CH1_1C_msc_2020305 All the material in this publication is copyright © Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a) (i)	argon / helium	ACCEPT Ar / He	1
(ii)	nitrogen	ACCEPT N ₂	1
(iii)	carbon dioxide	ACCEPT CO ₂	1
(iv)	carbon dioxide	ACCEPT CO ₂	1
(b) (i)			1
(b) (i)	$S + O_2 \rightarrow SO_2$		I
(ii)	acid rain	ACCEPT an adverse effect of acid rain e.g. kills fish, damages plants, corrodes limestone/marble buildings/statues etc. IGNORE toxic/pollutant	1
			Total 6

Question number	Answer		Notes	Marks
2 (a)				
	name of the part of the atom labelled Z	nucleus		
	number of protons in this atom	12		
	number of the group that contains this element	2		
	number of the period that contains this element	3		5
	charge on the ion formed from this atom	2+	ACCEPT +2 / Mg ²⁺	
(b)	 calculate sum of mass numbers mu percentage abundances divide answer by 100 give answer to one decimal place Example calculation 			
	M1 (24 x 79.2) + (25 x 10.0) + (26 x 10.8) (DR 2431.6	REJECT if correct working given but incorrectly evaluated	
	M2 2431.6 ÷ 100 OR 24.316		ALLOW ECF from M1 (24 x 0.792) + (25 x	
			0.100) + (26 x 0.108) OR 24.316 with or without working scores M1 and M2	3
	M3 24.3		ALLOW ECF from M2 if calculated answer is to 1dp	
				Total 8

	Questi numb		Answer	Notes	Marks
3	(a)		galvanising	ACCEPT galvanisation	1
	(b)	(i)	rust		1
		(ii)	M1 oxygen / air	ACCEPT O ₂ IGNORE O	2
			M2 water	ACCEPT H ₂ O/moisture	
				ACCEPT in either order	
	(C)	(i)	(a reaction which) gives out / produces / releases heat (energy) / thermal energy	IGNORE energy without mention of heat or thermal	1
		(ii)	An explanation that links the following two points		2
			M1 aluminium/Al is more reactive than iron/Fe	ACCEPT aluminium/Al is higher in reactivity series than iron/Fe	
				ACCEPT reverse argument	
			M2 (because) aluminium/Al displaces iron/Fe (from its oxide)	ALLOW replaces/takes place of	
		(iii)	An explanation that links the following three points		3
			M1 aluminium is oxidised and iron/iron oxide is reduced	ALLOW both oxidation and reduction occur	
			M2 aluminium gains oxygen	ALLOW aluminium/Al loses electrons	
			M3 iron oxide/iron loses oxygen	ALLOW iron <u>ions</u> /Fe ³⁺ gains electrons	
				ALLOW correct references to changes in oxidation number for M2 and M3	
					Total 10

Question number		Answer		Notes	Marks
4 (a) (i)					3
	Mg ²⁺	Al ³⁺	NH4 ⁺		
	S ²⁻ MgS	Al_2S_3	(NH ₄) ₂ S	1 mark for each correct formula	
	NO3 ⁻ Mg(NO3)2	Al(NO ₃) ₃	NH ₄ NO ₃		
	CO ₃ ²⁻ MgCO ₃	Al ₂ (CO ₃) ₃	(NH ₄) ₂ CO ₃		
(ii)	ammonium nitrate				1
(b) (i)	M1 electrostatic (for	ce of) attract	tion	ALLOW electrostatic force	2
	M2 between opposite	ely charged ic	ons	ACCEPT between positive and negative ions ACCEPT between cations and anions	
(ii)	$\left[\begin{array}{c} & & \\ & $	*** * * * *** 2-			3
	M1 correct electron ions	arrangement	of both sodium	If only outer shells	
	M2 correct electron	arrangement	of the oxide ion	shown correctly scores 1 mark	
	M3 correct charges of brackets)			ACCEPT dots in place of crosses or any combination of dots and crosses for M1 and M2	
					Total 9

Question number	-	Answer	Notes	Marks
5 (a) ((i)	S		1
((ii)	T and U		1
		1		
(i	(iii)	U		1
(b)		A description that makes reference to the following three points		
		M1 (add) bromine water	ACCEPT Br ₂ (aq)	
		M2 no change / stays orange	ALLOW no reaction	
			If initial colour of bromine water is given in M2 or M3 it must be correct -ALLOW any combination of orange/yellow/brown - but penalise once only	
			If bromine given for M1 then in M2 and M3 allow any combination of red/orange/brown/yellow	
			M2 and M3 dep on bromine water/bromine in M1	
			If no reagent and correct M2 and M3 - score 1	
			if incorrect reagent and correct M2 and M3 score 0	
		M3 (bromine water) decolourised / changes (from	IGNORE clear	
		orange) to colourless	REJECT discoloured	
			ALLOW M1 acidified potassium manganate(VII) M2 no change/stays purple M3 decolourised / goes colourless	3
		1		5
		1		
		1		
		1		l

Question number	Answer	Notes	Marks
5 (c)	Any two of the following points		
	M1 (can be represented by a) general formula		
	$\ensuremath{\text{M2}}$ each member differs from the next by a $\ensuremath{\text{CH}_2}$ group OWTTE		
	M3 (each member has) same functional group		
	M4 (each member has) similar/same chemical properties / similar/same (chemical) reactions	ACCEPT react in similar/same way	
	M5 trend in physical properties (between successive members)	ACCEPT named physical property, e.g. boiling point	
		REJECT similar/same physical properties	2
(d) (i)	but-1-ene	ALLOW 1-butene	1
(ii)	Either H H H H H - C - C = C - C - H H H H	ACCEPT cis or trans isomer	
	Or		1
	$ \begin{array}{ccccccc} H & H \\ H - C - C = C \\ H & H \\ H - C - H \\ H \\ H \end{array} $	REJECT displayed formulae of cyclic alkanes	

Question number	Answer	Notes	Marks
5 (e) (i)	 Divide percentages by relative atomic masses Divide results by smallest value to obtain ratio 	0 marks if division by atomic numbers or upside down calculation	
M1	C H F <u>36.36 6.06 57.58</u> 12 1 19		
M2	3.036.063.033.033.033.03		
OR	1 2 1		2
(ii)	 divide relative molecular mass by empirical formula mass correct molecular formula 		
Exa	imple calculation		
M1	66 OR 66 OR 2 12 + 2 + 19 33 33		
М2	$C_2H_4F_2$	ACCEPT symbols in any order	
		correct answer without working scores 2 marks.	2
		2CH ₂ F scores 1	
			Total 14

Question number	Answer		Notes	Marks
6 (a) (b)	zinc + hydrochloric acid \rightarrow zinc chloric	le + hydrogen	ACCEPT fully correct chemical equation	1
	temperature in °C after adding zinc	22.4	If readings are correct but in wrong order award 1 mark for M1	
	temperature in °C before adding zinc	17.7	and M2	
	temperature change in °C	4.7		3
	M1 22.4			
	M2 17.7			
	M3 (+)4.7			
			ALLOW ECF for M3 if M1 and/or M2 incorrect If answers not given to nearest 0.1°C penalise once only	
(c) (i)	An explanation that links any two of th	e following po	vints	
	M1 polystyrene is an insulator		ALLOW is not a (good) conductor of heat ALLOW is a poor conductor of heat	
	M2 (so) reduces heat loss		ALLOW prevents heat loss ALLOW keeps heat in	
	M3 temperature rise/change/reading v true value OWTTE	vill be closer t	o ALLOW temperature rise/change/reading will be more accurate/valid	2
(ii)	Any three from			
	M1 amount/mass of metal		ALLOW size / surface area of metal	
	M2 concentration of acid		area of metat	
	M3 volume of acid		ALLOW amount of acid	
	M4 (speed/time of) stirring			
	M5 external / room temperature		ALLOW initial /starting temperature	3

	Questi numbe		Answer	Notes	Marks
6	(d)	(i)	no reaction (occurred between copper and hydrochloric acid)	IGNORE copper is unreactive ALLOW copper is less reactive than hydrogen	1
		(ii)	Any value between 1.5 and 5.0 °C inclusive		1
		(iii)	most reactive magnesium zinc iron tin copper	ACCEPT symbols	1
					Total 12

	Question number		Answer	Marks
7	(a)	(i)	B bromine	1
			A is incorrect as astatine is a solid	
		(ii)	C is incorrect as chlorine is a gas D is incorrect as iodine is a solid	1
		()		
		(iii)		1
			C chlorine (as it is pale green)	
			A is incorrect as astatine is black	
			B is incorrect as bromine is brown C is incorrect as iodine is dark grey	
			A astatine	
			B is incorrect as bromine is more reactive than astatine	
			C is incorrect as chlorine is more reactive than astatine D is incorrect as iodine is more reactive than astatine	

(b) (i)	M1 (colourless solution turns) brown		
	M2 (solution stays) brown / no change	ALLOW no reaction	2
(ii)	bromine would not react with (sodium) bromide / bromine cannot displace itself OWTTE	ALLOW bromine cannot react with itself ALLOW both contain bromine/same element/same halogen ALLOW because no reaction would occur REJECT bromine cannot displace bromide	1
(iii)	Br ₂ + 2Nal → 2NaBr + I ₂	ACCEPT correct ionic equation $Br_2 + 2l^- \rightarrow 2Br^- + l_2$ ALLOW multiples and fractions	1

number Allswei Notes 7 (c) A description that makes reference to the following 6 points 6	
Test for cation	
M1 add sodium hydroxide (solution) ALLOW ammonia solution	
M2 if blue precipitate forms solution contains copper(II) ion(s) / contains Cu2+ / is a copper compoundIGNORE qualifiers REJECT other colou	ırs
M3 if green precipitate forms solution contains iron(II) ion(s) / contains Fe ²⁺ / is an iron compound IGNORE qualifiers REJECT other colou	ırs
If no reagent or incorrect reagent b correct M2 and M3 score 1	ut
ALLOW M1 flame test or description of flame test	e
M2 if blue-green (flame) solution contains copper(II) ion(s) / contains Cu ²⁺ / is a copper compound	
No M3 for this test	
ALLOW M1 addition of suita metal above Cu in reactivity series	able
M2 brown/pink/pin brown solid forms	k-
No M3 for this test	
	6

Test for anion		
M4 add silver nitrate (solution)		
	IGNORE addition of nitric acid	
	REJECT addition of hydrochloric acid for M4	
M5 if white precipitate forms solution contains chloride ion(s) / contains Cl ⁻ / is a chloride		
M6 if cream precipitate forms solution contains		
bromide ion(s) / contains Br ⁻ / is a bromide	If no reagent or incorrect reagent but correct M5 and M6 score 1	
	ALLOW M4 add chlorine water (to solution)	
	M5 if turns orange/yellow/brown solution contains bromide ion(s) / contains Br ⁻ / is a bromide	
	No M6 for this test	
		Tota

	Quest numb	ion er	Answer	Notes	Marks
8		(i)	sublimation / subliming		1
		(ii)	M1 (add to/bubble into) limewater		2
			M2 (limewater) turns cloudy/milky	ACCEPT forms white precipitate M2 DEP M1	
	(b)		An explanation that links the following two points		
			M1 weak forces (of attraction) between molecules / weak intermolecular forces (of attraction)	ALLOW weak intermolecular bonds ALLOW weak intermolecular attractions	
			M2 little energy needed to overcome the	IGNORE less energy	
			(intermolecular) forces	ALLOW little energy needed to separate the molecules	
				M2 DEP M1 correct or missing	2

(c)	Any explanation that links any three of the following points for diamond		6
	M1 each (carbon) atom is (covalently) bonded to four other (carbon) atoms	ALLOW each carbon has four bonds	
	M2 in a (giant) tetrahedral lattice /network / structure	ALLOW 3D/rigid in place of tetrahedral	
	M3 the (covalent) bonds are (very) strong	ALLOW reference to lot of energy needed to break the (covalent) bonds	
		ALLOW there are lots of/many (covalent) bonds	
	M4 (therefore) diamond is (very) hard (and so good for cutting tools)	ALLOW diamond is (very) strong	
		If mention of intermolecular forces in diamond MAX 2 for diamond	
		If mention of ions in diamond only M4 can be scored	
	Any explanation that links any three of the following points for graphite		
	M5 each (carbon) atom is (covalently) bonded to three other (carbon) atoms		
	M6 (the structure is) in layers	ALLOW sheets	
	M7 weak forces (between layers)		
	M8 (the layers can) slide over each other/ rub off		
	M9 this makes graphite soft (so it can make marks on paper)	ALLOW slippery	
		If mention of intermolecular forces in graphite MAX 2 for graphite	
		If mention of ions in graphite only M9 can be scored	
			Total 11

Question number	Answer	Notes	Marks
9 (a)	to minimise/prevent (mass loss by) evaporation of the (liquid) fuel OWTTE	ALLOW to find mass of fuel used/burned	1
(b) (i)	soot/carbon	REJECT copper oxide	1
(ii)	An explanation that links the following two points. M1 incomplete combustion (occurs) M2 (because) the air/oxygen supply is limited OWTTE	ALLOW mark for soot/carbon if not seen in (i), unless copper oxide is mentioned in (i) If copper oxide in (i) ALLOW 1 mark for (because) copper reacts with oxygen (in air)	2
(C) (i)	 substitution into Q = mc∆T calculation of heat energy in Joules conversion to kJ Example calculation M1 Q = 100 x 4.2 x 30 M2 = 12600 (J) M3 = 12.6 kJ 	12600 (J) with no working scores M1 and M2 M2 ECF M1 ALLOW approximately = 13 kJ 12.6 kJ with no working scores 3	3

(ii)	 calculate the amount, in moles, of methanol divide Q by the amount in moles give the answer with the correct sign 			
	Example calculation			
	M1 0.96 ÷ 32 OR 0.03			
	M2 12.6 ÷ 0.03 OR 420 (kJ/mol)	ACCEPT 13 ÷ 0.03 OR 430/433 for M2		
	M3 – 420 (kJ/mol)	AND – 430 / – 433 for M3	3	

Question number	Answer	Notes	Marks
9 (d) (i)	M1 all points plotted correctly		
	M2 line of best fit drawn with a ruler	does not need to start at (0,0)	2
	$ \begin{array}{c} 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ -500 & -500 & -1000 & -1500 & -1500 & -1500 & -2500 & -2500 & -3000 & -3500 & -3500 & -4000 & -45000 & -4500 & -4500 & -4500 & -4500 & -4500 & -4500 & -4500 & -45$		
(ii)	M1 straight line extrapolated up to 6 carbon atoms	ALLOW extra point shown at 6 carbon atoms	
	M2 value of ΔH read from their graph	negative sign needed	2
(iii)	The greater the number of carbon atoms (per molecule) the greater (the magnitude/ value of) ΔH	ALLOW ∆H is (directly) proportional to the number of carbon atoms per molecule	
		ALLOW The greater the number of carbon atoms (per molecule) the more exothermic the ΔH value	
			1
			Total 15

Question number	Answer	Notes	Marks	
10 (a) (i)	4 NH ₃ + 5 O ₂ ⇒ 4 NO + 6 H ₂ O	ACCEPT multiples and fractions	1	
(ii)	reversible (reaction)	ACCEPT reaction that goes both ways / both forwards and backwards reactions occur		
		IGNORE references to equilibrium	1	
(iii)	to increase the rate of the reaction / to speed up the reaction OWTTE	IGNORE references to lowering the activation energy	1	
(b)	$2NO + O_2 \rightarrow 2NO_2$	ACCEPT multiples and fractions	1	
(c) (i)	 calculate M_r of NO₂ and HNO₃ calculate the amount, in moles, of NO₂ calculate the amount, in moles, of HNO₃ calculate the mass in tonnes of HNO₃ 		4	
	Example calculation			
	M1 M_r of NO ₂ = 46 M_r of HNO ₃ = 63			
	M2 $n(NO_2) = 11.5 \times 10^6 \div 46$ OR 250 000 (mol)	ALLOW working in megamoles i.e. 11.5 ÷ 46 OR 0.25		
	M2 $p(HNO_{1}) = 2 \times 250000$ OP 167 000 / 170 000	ALLOW ECF from incorrect Mr of NO_2		
	M3 $n(\text{HNO}_3) = \frac{2 \times 25\ 0000}{3}$ OR 167 000 / 170 000	calculator answer 166666.66 ALLOW working in megamoles i.e. <u>2 x 0.25</u> OR 0.167 / 0.17 <u>3</u>		
		ALLOW ECF from M2		
	M4 (167 000 x 63 g) = 10.5 (tonnes)	10.5 (tonnes) with no working scores 4		
		ACCEPT 10.7 (if 170 000 used)		
		ALLOW ECF from M3 ALLOW ECF from incorrect M _r of HNO ₃		
(ii)	can be (re)used in stage 2 / to make more nitrogen dioxide (in stage 2) / can be used to make more nitric acid	IGNORE can be recycled/reused unless qualified	1	

Question number	Answer	Notes	Marks
10 (d)	 calculate the amount, in moles, of copper(II) nitrate calculate the theoretical yield, in moles, of copper(II) nitrate calculate the percentage yield 		
	Example calculation		
	M1 <i>n</i> Cu(NO ₃) ₂ formed = $15.3 \div 187.5$ OR 0.0816	ALLOW 0.082	3
	M2 theoretical <i>n</i> Cu(NO ₃) ₂ = 0.200 ÷ 2 OR 0.100		5
	M3 (% yield) = (0.0816 x 100) = 81.6 (%) (0.100)	ACCEPT 82 (%)	
		Mark M3 CSQ on M1 and M2	
		40.8 scores 2	
	 Alternative method calculate the theoretical yield, in moles, of copper(II) nitrate calculate the theoretical mass of copper nitrate that should be formed calculate the percentage yield 		
	Example calculation		
	M1 theoretical <i>n</i> Cu(NO ₃) ₂ = 0.200 ÷ 2 OR 0.100		
	M2 theoretical mass of copper nitrate = 0.1 x 187.5 = 18.75	ALLOW 18.8	
	M3 (% yield) = <u>15.3</u> x 100 = 81.6 (%) 18.75	ACCEPT 82 (%)	
		Mark M3 CSQ on M1 and M2	
		40.8 scores 2	
		81.6(%) with no working scores 3 marks	
			Total 12

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom