Mark Scheme 4751 June 2005

4751

Section A

1	40	2	M1 subst of 3 for x or attempt at long	
•		-	divn with $x^3 - 3x^2$ seen in working: 0 for	
			attempt at factors by inspection	2
2	z = 6v	3	M1 for $3x + mx = y + 5y$ o.e. and	
	$[x =]\frac{1}{2 + m}$ as final answer		M1 for $x(3 + m)$ or ft sign error	3
2	n + 1 and $n + 2$ both seen	1		
5	3n + 3	M1	condone e.g. a instead of <i>n</i> for last 2	
			marks or starting again with full method	
			for middle number = v etc	
	=3(n + 1) o.e.	A1	or 3 a factor of both terms so divisible by	3
			3	
4	-0.6 o.e.	2	M1 for 0.6 or -0.6x o.e. or	
			rearrangement to ' y =' form [need not be	
	(4, 0)	1	correct]	
	(0, 12/5) o.e.	1	condone values of <i>x</i> and <i>y</i> given	4
	2			
5	$8 - 12x + 6x^2 - x^3$ isw	4	B3 for 3 terms correct or all correct	
			except for signs; B2 for two terms correct	
			including at least one of $-12x$ and $6x^2$;	4
			B1 for 1 3 3 1 sol or for 8 and $-x^{\circ}$	4
6	(1) 1	1.1		
	(ii) a ⁸ cao	1		
		'		
	1	3	M2 for two 'terms' correct or M1 for $3a^3b$	
	(iii) $\frac{1}{2a^{3}b}$ or $\frac{1}{3}a^{-3}b^{-1}$ isw		1 1 .	
	5 <i>u b</i>		or $\frac{1}{\sqrt{2}}$ or $\frac{1}{\sqrt{2}}$; ignore ±	5
			$(9a^{6}b^{2})^{2}$ $\sqrt{9a}b$	
7	(i) 3√6 or √54 isw	2	M1 for $\sqrt{4\times6}$ or $2\sqrt{6}$ or $3\sqrt{2}\sqrt{3}$ seen	
	,			
	(ii) 10 + 2√7	3	M1 for attempt to multiply num. and	
			denom. by 5 + $\sqrt{7}$ and M1 for 18 or 25 –	F
			7 seen	5
8	x(30 - 2x) = 112	M1	allow M1 for length = 30 2x soi	
U	x(30 - 2x) = 112 $x(15 - x) = 56 \text{ or } 30x - 2x^2 = 112$	A1	NB answer given	
	(x-7)(x-8)	1	0 for formula or completing sq etc	
	x = 7 or 8	1	must be explicit; both values required	
	7 by 16 or 8 by 14	1	allow for 16 and 14 found following 7 and	5
	2		8; both required	
9	$[y=] 3x + 2 = 3x^2 - 7x + 1$	M1	or rearrangement of linear and subst for	
		N 1 4	x in quadratic attempted	
	$[0 =] 3x^2 - 10x - 1 \text{ or } -3x^2 + 10x + 1$		attempt at formula Iden on first M1 and	
	$r = \frac{10 \pm \sqrt{100 + 12}}{100 + 12}$		allempt at ionnula [uep. on first with and guadratic = 0]: M2 for whole method for	
	<i>x</i> - <u>6</u>		completing square or M1 to stage before	
	$10 \pm \sqrt{112}$ $5 \pm \sqrt{28}$	A2	taking roots	
	$=\frac{10 \pm \sqrt{112}}{6}$ or $\frac{3 \pm \sqrt{20}}{2}$ o.e. isw		A1 for two of three 'terms' correct [with	5
	6 3		correct fraction line] or for one root	-
1				

Section B

4751

10	i	$(x-4)^2 + 9$	3	B1 for 4, B2 for 9 or M1 for 25 – 16	3
	ii	(4, 9) or ft	1+1		
		parabola right way up 25 at intersection on <i>y</i> -axis (mark intent)	G1 G1	condone stopping at <i>y</i> axis ignore posn of min: can ft theirs	4
	iii	x > 7 or x < 1	3	M1 for $x^2 - 8x + 7$ [> 0] and M1 for (x - 7)(x - 1) [>0] <u>or</u> M1 for (x - 4) ² [>] 9 and M1 for x - 4 > 3	
				and $x - 4 < -3$ or B2 for 1 and 7	3
	iv	$[y =] x^2 - 8x + 5$	1	or $[y =] (x - 4)^2 - 11$	1
11	i	$(6 - 0)^2 + (10 - 2)^2$ AC = 10 AB = $\sqrt{98}$ and BC = $\sqrt{2}$ clear correct use of Pythagoras's theorem [angle in a semicircle so]AC diameter [so radius = 5]	M1 A1 1 1	or 1 for grad AB = 1 and grad BC = -1 and 1 for comment/ showing $m_1m_2 = -1$ o.e. <i>d</i> or diameter needed; NB ans given	4
		midpt of AC = (6/2, [10+2]/2)	1	method must be shown; NB ans givn	
		$(x-3)^2 + (y-6)^2 = 5^2$ o.e. isw	2	B1 for one side correct	4
	iii	[grad AC =] 8/6 or 4/3 grad tgt = $-3/4$ y - 10 = [-3/4](x - 6) o.e. [e.g. $3x + 4y = 58$] or ft (58/3, 0) and (0, 58/4) o.e. isw	1 M1 M1 A2	for grad tgt = -1 /their grad AC or M1 for <i>y</i> = their <i>m x</i> + <i>c</i> then subst (6, 10) to find <i>c</i> 1 each cao; condone not as coords	5
40			111		
12	1	(x + 1)(x - 2)(x - 5) (x + 1)(x ² - 7x + 10) correct step shown towards completion [answer given]	A1 A1	o.e. with two other factors; condone missing brackets if expanded correctly; A2 for $x^3 - 5x^2 - 2x^2 + x^2 +$ 10x - 5x - 2x + 10	3
	ii	cubic the right way up –1, 2 and 5 indicated on <i>x</i> axis 10 indicated at intn on <i>y</i> axis	G1 G1 G1	must extend beyond $x = -1$ and 5 at intersections of curve and axis	3
	iii	f(4) attempted	M1	or $f(4) + 10$; or '4 a root implies (x – 4) a factor' or vv	
		= 64 – 96+ 12 + 10	A1	or $5 \times 2 \times -1$ etc or correct long division if first M1 earned	
		attempt at long division of $x^3 - 6x^2 + 3x + 20$ by $x - 4$ as far as $x^3 - 4x^2$ in working	M2	or M2 for $(x - 4)(x^2 + 5)$ or $(x - 4)(x^2 - 2x + k)$ seen; M1 for realising long divn by $x - 4$ needed but not doing it	
		$x^2 - 2x - 5 = 0$	A2	A1 for $x^2 - 2x - 5$ SC2 for finding f(x) ÷ (x - 4) = $x^2 - 2x - 5$ rem - 10 without further explanation	6

146