Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Education Advanced Level Examination June 2010

Mathematics

MPC4

Unit Pure Core 4

Tuesday 15 June 2010 9.00 am to 10.30 am

For this paper you must have:

• the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

 Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions in the spaces provided.

1 (a) The polynomial f(x) is defined by $f(x) = 8x^3 + 6x^2 - 14x - 1$.

Find the remainder when f(x) is divided by (4x - 1). (2 marks)

- (b) The polynomial g(x) is defined by $g(x) = 8x^3 + 6x^2 14x + d$.
 - (i) Given that (4x 1) is a factor of g(x), find the value of the constant d. (2 marks)
 - (ii) Given that $g(x) = (4x 1)(ax^2 + bx + c)$, find the values of the integers a, b and c.

 (3 marks)

QUESTION PART REFERENCE	
PART	
REFERENCE	

QUESTION PART REFERENCE	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	

2	A curve is defined by the parametric equations					
	$x = 1 - 3t$, $y = 1 + 2t^3$					
(a	Find $\frac{dy}{dx}$ in terms of t .	(3 marks)				
(b	Find an equation of the normal to the curve at the point where $t = 1$.	(4 marks)				
(с	Find a cartesian equation of the curve.	(2 marks)				
QUESTION PART REFERENCE						
		•••••				
		••••••				
		•••••				

QUESTION PART REFERENCE	
REFERENCE	
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	
•••••	
• • • • • • • • • • • • • • • • • • • •	

0 () (')	Б	7x - 3	1 .6	A	B	(2)	7 \
3 (a) (ı)	Express	$\frac{7x}{(x+1)(3x-2)}$	in the form	$\frac{1}{x+1}$	$\frac{1}{3x-2}$.	(3	marks)

(ii) Hence find
$$\int \frac{7x-3}{(x+1)(3x-2)} dx.$$
 (2 marks)

(b) Express
$$\frac{6x^2 + x + 2}{2x^2 - x + 1}$$
 in the form $P + \frac{Qx + R}{2x^2 - x + 1}$. (3 marks)

QUESTION PART REFERENCE	
••••••	
••••••	
•••••	

QUESTION PART REFERENCE	
•••••	
•••••	
•••••	
••••••	
••••••	

4 (a) (i) Find the binomial expansion of $(1+x)^{\frac{3}{2}}$ up to and including the term in x^2 . (2 marks) (ii) Find the binomial expansion of $(16+9x)^{\frac{3}{2}}$ up to and including the term in x^2 . Use your answer to part (a)(ii) to show that $13^{\frac{3}{2}} \approx 46 + \frac{a}{b}$, stating the values of the (b) integers a and b. (2 marks)

QUESTION PART REFERENCE	
•••••	

5 (a) (i) Show that the equation $3\cos 2x + 2\sin x + 1 = 0$ can be written in the form

$$3\sin^2 x - \sin x - 2 = 0 \tag{3 marks}$$

(ii) Hence, given that $3\cos 2x + 2\sin x + 1 = 0$, find the possible values of $\sin x$.

(2 marks)

- (b) (i) Express $3\cos 2x + 2\sin 2x$ in the form $R\cos(2x \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, giving α to the nearest 0.1°. (3 marks)
 - (ii) Hence solve the equation

$$3\cos 2x + 2\sin 2x + 1 = 0$$

for all solutions in the interval $0^{\circ} < x < 180^{\circ}$, giving x to the nearest 0.1°.

(3 marks)

QUESTION PART REFERENCE	
REFERENCE	

QUESTION PART REFERENCE	
•••••	
•••••	
••••••	
•••••	
•••••	
•••••	
•••••	

6	A curve has equation $x^3y + \cos(\pi y) = 7$.
(a	Find the exact value of the x-coordinate at the point on the curve where $y = 1$. (2 marks)
(b) Find the gradient of the curve at the point where $y = 1$. (5 marks)
QUESTION PART REFERENCE	
•••••	
•	
•••••	
•••••	
•••••	
•••••	

QUESTION PART REFERENCE	
••••••	
•••••	
•••••	
••••••	
••••••	
•••••	
•••••	
••••••	
••••••	

7 The point A has coordinates (4, -3, 2).

The line
$$l_1$$
 passes through A and has equation $\mathbf{r} = \begin{bmatrix} 4 \\ -3 \\ 2 \end{bmatrix} + \lambda \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$.

The line
$$l_2$$
 has equation $\mathbf{r} = \begin{bmatrix} -1 \\ 3 \\ 4 \end{bmatrix} + \mu \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix}$.

The point B lies on l_2 where $\mu = 2$.

- (a) Find the vector \overrightarrow{AB} . (3 marks)
- **(b) (i)** Show that the lines l_1 and l_2 intersect. (4 marks)
 - (ii) The lines l_1 and l_2 intersect at the point P. Find the coordinates of P. (1 mark)
- (c) The point C lies on a line which is parallel to l_1 and which passes through the point B. The points A, B, C and P are the vertices of a parallelogram.

Find the coordinates of the two possible positions of the point C. (4 marks)

QUESTION	
QUESTION PART REFERENCE	
REFERENCE	
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • •	

QUESTION PART REFERENCE	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	

8 (a) Solve the differential equation

$$\frac{dx}{dt} = -\frac{1}{5}(x+1)^{\frac{1}{2}}$$

given that x = 80 when t = 0. Give your answer in the form x = f(t). (6 marks)

(b) A fungus is spreading on the surface of a wall. The proportion of the wall that is unaffected after time t hours is x%. The rate of change of x is modelled by the differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{1}{5}(x+1)^{\frac{1}{2}}$$

At t = 0, the proportion of the wall that is unaffected is 80%. Find the proportion of the wall that will still be unaffected after 60 hours. (2 marks)

- A biologist proposes an alternative model for the rate at which the fungus is spreading on the wall. The total surface area of the wall is 9 m^2 . The surface area that is **affected** at time t hours is t m. The biologist proposes that the rate of change of t is proportional to the product of the surface area that is affected and the surface area that is unaffected.
 - (i) Write down a differential equation for this model.

(You are not required to solve your differential equation.) (2 marks)

(ii) A solution of the differential equation for this model is given by

$$A = \frac{9}{1 + 4e^{-0.09t}}$$

Find the time taken for 50% of the area of the wall to be affected. Give your answer in hours to three significant figures. (4 marks)

QUESTION PART	
REFERENCE	
• • • • • • • • • • • • • • • • • • • •	
•••••	

QUESTION PART REFERENCE	
••••••	
•••••	
•••••	
••••••	
••••••	
•••••	
•••••	
••••••	
••••••	

QUESTION PART REFERENCE	
•••••	
•••••	
•••••	

QUESTION PART REFERENCE			
	<u> </u>		
	END OF QUESTIONS		

