A-Level Physics OCR A H556

5.3.1: Simple harmonic oscillations

#5.3.1a

displacement, amplitude, period, frequency, angular frequency and phase difference

#5.3.1b

angular frequency ω; ω=2πTω = \dfrac{2π}{T} or ω=2πfω = 2πf

#5.3.1c

(i) simple harmonic motion; defining equation a=ω2xa = -ω^2x

(ii) techniques and procedures used to determine the period/frequency of simple harmonic oscillations

PAG10 e.g. mass on a spring, pendulum

#5.3.1d

solutions to the equation a=ω2xa = -ω^2x e.g. x=Acosωtx = A\cos{ωt} or x=Asinωtx = A\sin{ωt}

#5.3.1e

velocity v=±ωA2x2v = ±ω\sqrt{A^2 - x^2} hence vmax=ωAv_{max} = ωA

#5.3.1f

the period of a simple harmonic oscillator is independent of its amplitude (isochronous oscillator)

#5.3.1g

graphical methods to relate the changes in displacement, velocity and acceleration during simple harmonic motion.

5.2.2
Centripetal force
5.3.2
Energy of a simple harmonic oscillator